Documentation for Version 8

Updated 31 January 2024

For installation and upgrading: https://herbaria.plants.ox.ac.uk/bol/brahms/support/installv8

Training guide: https://herbaria.plants.ox.ac.uk/bol/content/software/v8/Getting_Started_BRAHMS.pdf

Demonstration database: https://herbaria.plants.ox.ac.uk/bol/brahms/support/conifers

BRAHMS © Copyright, University of Oxford, 2024. All Rights Reserved

For licensing enquiries, contact brahms@innovation.ox.ac.uk

For technical enquiries, contact brahms@biology.ox.ac.uk

http://herbaria.plants.ox.ac.uk/bol/brahms/software/v8
Contents

BRAHMS INTRODUCED ... 17
 MANAGING NATURAL HISTORY ... 17
 DEVELOPMENT PRIORITIES .. 17
 BRAHMS v7 USERS .. 18
 A SELECTION OF BRAHMS VIDEO CLIPS .. 18
 SOME ACRONYMS AND OTHER TERMS USED IN BRAHMS .. 18

BUILDING A NATURAL HISTORY DATABASE ... 20
 INTRODUCTION ... 20
 HARDWARE .. 20
 DATA MIGRATION .. 21
 OPTIMISING DATA CAPTURE ... 21
 EXPLORING YOUR DATA .. 21
 REPORTS .. 21
 MAPPING .. 21
 SPECIAL MANAGEMENT AREAS ... 21

INSTALLATION AND UPDATES ... 22
 LICENSING ... 22
 PREREQUISITES AND .NET ... 22
 OTHER ISSUES YOU MAY ENCOUNTER .. 22
 WebView2 installer .. 22
 C++ redistributable ... 22
 Blocked DLL files ... 23
 SOFTWARE FOLDER LOCATION ... 23
 DISK SPACE AND MEMORY REQUIREMENTS .. 23
 INSTALLING V8 .. 24
 SOFTWARE AND DATABASE UPDATES .. 25
 The upgrading process .. 25
 BRAHMS server access requirements for updates .. 25

LOGGING INTO BRAHMS .. 26
 BRAHMS.EXE AND CREATING DESKTOP SHORTCUT .. 26
 LOGIN TO THE PERSONAL DATA STORE ... 26
 FIRST LOG IN AND DATABASE OWNERSHIP ... 27
 THE DATABASE PROJECTS MANAGER FORM OPENS ... 27
 THE DOCUMENTS/BRAHMS FOLDER ... 27
 CHOOSING A DIFFERENT FOLDER TO DOCUMENTS/BRAHMS .. 28
 TROUBLESHOOTING ON LOGGING IN .. 29

DATA STORES AND DATABASES .. 30
 THE DIFFERENCE BETWEEN DATA STORES AND DATABASE PROJECTS 30
 HOW MANY DATABASES IN A STORE? ... 30
 ONE DATABASE FOR ALL? .. 30
 SQLITE REQUIRES NO INSTALLATION ... 31
 MSSQL SERVER AND POSTGRESQL NEED AN EXTRA STEP ... 31
 MULTI-USER ACCESS ... 31
 CHOICE OF STORE .. 31

DATA CONNECTIONS .. 33
 INTRODUCTION ... 33
 DATA CONNECTIONS, SERVERS AND IT HELP .. 33
 SQLITE CONNECTIONS .. 33
THE DATABASE MANAGER

INTRODUCTION ... 41
CREATING A NEW DATABASE PROJECT 41
IMPORT A DATABASE FROM XML ... 41
EXPORT AN ENTIRE DATABASE TO XML 42

CONNECTING TO THE DEMO DATABASE 43

INTRODUCTION ... 43
IMPORTING THE DEMO DATABASE AS XML 43
CONNECTING TO THE SQLITE DATABASE 43
Download and open zip .. 43
Connect to configers in a different location 44

MANAGING USER ACCOUNTS AND PERMISSIONS 45

INTRODUCTION ... 45
VIEW AND EDIT THE DATABASE PROJECT MEMBERS LIST 45
EDITING THE USER LIST ... 45
 Adding and editing users ... 45
 A note on passwords .. 45
 Assigning database access to a user .. 46
 Users roles ... 46
LOGIN AUTHENTICATION METHODS ... 47
BRAHMS User ... 47
Local Windows Account ... 47
Domain User .. 47
 Issues with adding users and using domain login 47
ACCESS AND PERMISSIONS ... 47
 Introduction .. 47
 Editing user permissions ... 48
 Access permissions to RDE folders ... 49
SYSTEM BROADCASTING ... 49

BRAHMS SETUP OPTIONS AND LANGUAGE 51

INTRODUCTION ... 51
SYSTEM BACKGROUND .. 51
LANGUAGE ... 51
FORMATS FOR TAXA NAMES AND AUTHORS 51
 Authors .. 51
 Name epithets ... 52
REGISERING YOUR INSTITUTION CODE 52
SHARED FOLDER LOCATIONS .. 52
MAPPING .. 53
MODULES .. 53
BANNER IMAGE ... 53
SUPRESSING FORM BANNERS ... 54
BACKGROUND IMAGE .. 54
FONT SETTINGS ... 55
GRID OPTIONS .. 56
Tag Colours .. 56
Data grid line options ... 56
Column sorting .. 56
DATA GRID FUNDAMENTALS ... 57

INTRODUCTION TO DATA GRIDS AND THEIR PERFORMANCE .. 57
WORKING ON A SMALL SCREEN? .. 58
USING DATA GRID TABLES .. 58
 Opening and closing tables in data grids .. 58
 Opening multiple tables .. 58
 Docking tables ... 59
SETTING GRID APPEARANCE ... 60
 System Fonts and grid lines .. 60
 Header wrapping .. 60
NAVIGATION AND FUNCTION KEYS .. 60
 Navigation ... 60
 Function keys template – keyboard short cuts .. 61

ADJUST, SAVE AND SHARE GRID COLUMN VIEWS .. 62
 Adjusting data grid views .. 63
 Saving data grid views ... 63
 Default view file types and folder location .. 63
 Deleting data grid view files .. 63
 Sharing saved grid views .. 64
 Selecting a saved view .. 64

SORTING RECORDS .. 64
 Column sorting ... 64
 Enable column sorting .. 64
 Sort on single or multiple columns ... 65
 Sort by Last Added and Last Modified .. 65
 Sorting species in Natural Order ... 66
 Saving complex sort commands .. 66
 Sorting collection events by collector and number .. 67
 Date sorting ... 67
 Sorting in reports ... 67

TAGGING FUNCTIONS .. 68
 What are tags? ... 68
 How to tag and untag individual records ... 68
 Tag all, counting, filtering, clearing and inverting tags .. 68
 Tag groups ... 69
 Tag Transfers ... 70
 Tag matching records ... 71

RECORD ZOOM AND CELL OPTIONS ... 71
 Zoom option .. 71
 Cell option ... 71

COLUMN SUMMARIES .. 72
 List values with totals for the selected column .. 72
 Application of filters .. 73
 Value merging ... 73

MULTI-COLUMN ANALYSIS ... 73

LOCATING AND MARKING DUPLICATED RECORDS FOR DELETION .. 74

TREE VIEWS .. 74

SAVING DATA TO EXCEL OR CSV .. 75
COPYING CELLS AND RECORDS ... 76
 Copy records .. 76
 Copy Cells ... 76

DATA GRID RIGHT-CLICK MENU .. 76

FIELD LEVEL HELP .. 77

FIND, FILTER AND QUERY .. 78

INTRODUCTION .. 78
Add an image to the Title Band ... 180
Saving the report .. 180
Adding page numbering ... 180
Adding the data band .. 181
 Adding a Group Header ... 181
Sorting the data ... 182
Adding a condition to the data band .. 183
Adding a border box around the data band .. 183
Combining text with date fields ... 184
How to upper case a data value .. 184
Print report or save to a document .. 184
Designing a Specimen label ... 185
Tagging the records for your labels .. 185
Create the report template page layout .. 185
Adding text for the top of the label .. 186
Adding data fields .. 186
Combining field names in a text box ... 186
Using HTML tags ... 187
Using conditional clauses to print the full taxa name 187
Adding geographic data and other notes fields 188
An example of greater control when not using a calculated field 189
Adding collector name(s), field number and date 189
Adding barcodes ... 190
Adding dates in RDE and main tables .. 191
Designing a Label for Plant Tags ... 191
Controlling Report output using a numeric count field 194
Preparing a Transaction List ... 195
Creating a report using Master Detail ... 196
Introduction .. 196
When to use Group Headers ... 197
Data in separate tables .. 197
Report – example output ... 197
Designing your report template ... 198
 Overall design layout ... 198
 Family name .. 198
 Species name ... 199
 Print if detail empty ... 199
 Species text band ... 199
References data band .. 200
Sorting alphanumeric fields numerically in reports 202

Image Management .. 203

Introduction ... 203
Image Copyright ... 203
Viewing Images ... 204
Manually Linking Images .. 205
The Main Image Library .. 206
Image Folders ... 206
Image File Metadata .. 206
Image Location and File Names ... 207
Using Image URLs .. 207
Importing Images and Image Links from Excel 208
Importing Images from Excel - Examples .. 209
 Image import example 1 ... 209
 Image import example 2 ... 209
Importing Images from Excel to RDE Files .. 210
Viewing Image Links ... 211
Editing plant records ... 260

Plant status .. 261

Introduction .. 261

Configuration for Alive status .. 261

Hide dead plants by default .. 261

Registering status values in your lookup list ... 261

Registering reasons for changing plant status .. 262

Confirming or changing plant status ... 262

Plant stock quantities and adjustments .. 263

Plant stock data fields ... 263

Manually adjusting stock levels ... 264

Adding stock adjustment reason lookup values ... 264

Plant locations in garden ... 265

Moving tagged plants .. 265

Managing plant identifications ... 265

Verification of names ... 265

Setting up the events lookups for verifications ... 266

Editing verifications ... 266

Changing identification ... 267

Bulk name changes .. 268

Collecting vouchers from garden plants .. 269

Plant Location Summary .. 269

Last event/request date and edit category ... 270

Linking plants to a transaction ... 270

Calculated fields for plant records ... 271

Sponsorship, commemoration and tributes .. 272

Tagging in the plant table .. 272

Using tag groups with plant records .. 272

Tagging plants based on tags in other tables ... 272

Creating a plant RDE file for the Gardens Mobile App ... 273

PLANT EVENTS ... 273

Introduction .. 273

Event categories and other fields .. 274

Registering your event categories in the lookup list .. 274

Editing Plant Events ... 275

Creating an RDE table for plant events ... 276

Transferring Event RDE files to BRAHMS .. 276

Importing Plant Events from Excel .. 276

PLANT REQUESTS .. 277

REGISTERING AND PRODUCING PLANT LABELS .. 278

Introduction .. 278

Key points ... 278

Registering your label categories .. 278

Species or plants .. 278

Create new label template .. 279

Enable direct print .. 280

Excel Output .. 280

Editing a report template .. 280

Producing plant labels ... 281

Processing label requests ... 281

Permission settings ... 282

INDEX SEMINUM .. 283

Introduction .. 283

Adding a new Index Seminum ... 283

Adding index Seminum seed entries .. 283

Renumbering index entries .. 283

Index Seminum outputs .. 283

IMAGES AND DOCUMENTS .. 284

Images ... 284
LEGAL PERMITS/AGREEMENTS TABLE ... 324
DEFAULT VALUES FOR PERMIT TYPES AND RESTRICTIONS .. 324
ASSIGNING LEGAL AND RESTRICTION STATUS TO RECORDS .. 325
ADDING AGREEMENTS AND RELATED DOCUMENTS ... 325
TRANSACTIONS AND DISTRIBUTION STATUS .. 326
THE NAGOYA PROTOCOL .. 326
SPECIES PROTECTION AND LEGAL STATUS .. 326

PUBLISHING ONLINE WITH WEBCONNECT .. 328

INTRODUCTION .. 328
BRAHMS online ... 328
BRAHMS online servers .. 328
BRAHMS WebConnect ... 329
Signing in ... 329
MANAGING WEBSITE PROJECTS ... 330
Create a new website project .. 330
Editing a project .. 330
Description and access permissions ... 330
Project members .. 330
Delete a project .. 331

WEBSITE DESIGN .. 331
Introduction ... 331
Creating and editing web pages .. 331
Opening the website editor ... 331
Editing the HTML .. 332
Adding new pages .. 333
Using CSS .. 333

WEBSITE PAGE IMAGES .. 334
Introduction ... 334
Banner image ... 334
Other website images and documents .. 335
Virtual search themes .. 335

UPLOADING DATA FROM BRAHMS TO BRAHMS ONLINE ... 335
Introduction ... 335
Creating an online database .. 335
Linking your database to your website project ... 336
Explore menu ... 336
Uploading data ... 337

DATABASE MAINTENANCE .. 340

RE-INDEXING DATABASES .. 340
SQLite databases ... 340
MSSQL Server .. 340
BACKING UP YOUR DATA .. 341
Introduction ... 341
Creating backups - which files? ... 341
SQLite files .. 341
MSSQL Server - Express or Full version .. 341
PostgreSQL .. 342
BRAHMS introduced

Managing Natural History

BRAHMS is a management system for preserved and living natural history collections, taxonomic research and biogeographic study. Updated to the latest database technologies, BRAHMS is scalable from the individual research project to enterprise level systems with millions of records.

For collection managers in museums, botanic gardens, herbaria and seed banks and for those undertaking researches related to natural history, BRAHMS helps integrate all of your data, increasing outputs and productivity.

The Taxonomic data infrastructure lies at the core of all BRAHMS databases.

Development priorities

Intuitive - similar to MS Office applications
Scalable - from individual researcher to multi-site enterprise systems
Taxonomic Core - comprehensive across disciplines
Integrating Digital Assets - including preserved and living collections
Modular - allow others to develop, including web-based add-ons
International - with respect to data store and user interface
Sustainable and providing custom support -
BRAHMS v7 users

Although v8 is a completely new system, v7 users will be able to adapt quickly. Most v7 features and functions have been carried over and are more intuitive in the new system. For a summary of some of the key changes between v7 and v8, refer to Annex 2.

A selection of BRAHMS video clips

Performance in a large database
Connecting to the conifer demo database
Create a new database project
Adding a new user account
Editing user access and permissions
Using the species table form
Adding text entries to taxa
Using data grid filters
Selecting visible columns
Exporting to Excel/CSV
Merging values - a fast way to tidy your data
Creating an RDE file for geographic data
Importing plant names from IPNI
Importing bird sample data from an Excel table
Adding species names to an RDE file

Mapping in action
Editing map points
Living collection data: Excel to RDE
Living collection data: RDE to BRAHMS
Printing a garden plant list
Design and print botanic garden labels
Updating and viewing calculated fields
Opening, docking and linking tables
Using tags, filters and maps
Generating labels and saving to pptx
Images -> specimen RDE file for data capture
Tracking edits and using Undo
Managing transactions
Deleting records

Some acronyms and other terms used in BRAHMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArcGIS API</td>
<td>Internal mapper used in BRAHMS.</td>
</tr>
<tr>
<td>BGCI</td>
<td>Botanic Garden Conservation International.</td>
</tr>
<tr>
<td>BOL</td>
<td>BRAHMS Online.</td>
</tr>
<tr>
<td>BRAHMS</td>
<td>The acronym originally stood for ‘Botanical Research And Herbarium Management System’. The name BRAHMS is still used – however, the ‘Botanical’ and ‘Herbarium’ are no longer relevant as BRAHMS manages all natural history collections.</td>
</tr>
<tr>
<td>Calculated fields</td>
<td>Fields that are not automatically updated – they are updated using the Recalculate function.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Collection event</td>
<td>Collection event records store details of collections: who by, when, where, what. They are known as Botanical Records in v7. An event may result in one to many physical specimens. Alternatively, it may be an observation or a recording from literature.</td>
</tr>
<tr>
<td>Custom field</td>
<td>A non-standard data field added to BRAHMS (known as link fields in v7).</td>
</tr>
<tr>
<td>Data Connection</td>
<td>A data connection is a link from the BRAHMS software to a data store. A data store may have one to many databases.</td>
</tr>
<tr>
<td>Database project</td>
<td>A specific database (= project) in a data store.</td>
</tr>
<tr>
<td>Edit History</td>
<td>The history of edits made to the database. This is called Track Changes in v7.</td>
</tr>
<tr>
<td>Gazetteer</td>
<td>A place name added to the main gazetteer table as a collection event location. Often a town name, park name, a forest, a mountain name or similar. If unknown or vague, a description may be stored in locality notes. The place name should be linked to a country and hopefully a major admin area such as a state or department.</td>
</tr>
<tr>
<td>Lookup List</td>
<td>The central lookup dictionary as found on Management > Lookup Lists.</td>
</tr>
<tr>
<td>Merge records</td>
<td>Merging records is used to join one or more records into one. This is used where there are two or more records representing the same thing. Merging records will also process child records, joining these to the selected record.</td>
</tr>
<tr>
<td>Merge values</td>
<td>If there are multiple spellings/formats of a text string in a given field, these can be edited to a standard value using Merge Values on the Summary form.</td>
</tr>
<tr>
<td>Query or Filter</td>
<td>Filter and query and one and the same thing in BRAHMS v8. These actions lead to a selection of your data which can subsequently be processed as you wish (exported, printed, mapped, etc.).</td>
</tr>
<tr>
<td>RDE</td>
<td>Rapid Data Entry. RDE files are external to BRAHMS, used for efficient data capture. Refer to the Rapid Data Entry section.</td>
</tr>
<tr>
<td>Specimen</td>
<td>A physical object of any category, derived from a collection event.</td>
</tr>
<tr>
<td>Tag</td>
<td>A single character mark (default=*) in the TAG field. This field is found in all tables.</td>
</tr>
<tr>
<td>Tag groups</td>
<td>Tag groups enable you to set up and save any logical grouping of records, for example a list of species records that are in some grouping, for example ‘Migratory birds’ or ‘Poisonous plants’.</td>
</tr>
<tr>
<td>Transaction</td>
<td>A transaction record describes a loan, exchange, gift or any other category of transaction. You can link specimens and/or living plant material to transactions.</td>
</tr>
</tbody>
</table>
Building a natural history database

Introduction

Some database project examples:
- manage a grasshopper or beetle collection;
- create a catalogue of fungi or cultivated plants;
- produce an annotated checklist for a mountain in Cameroon;
- develop a comprehensive botanic garden or seed bank management system;
- or all of these together within a larger natural history museum or herbarium;
- create an online portal to search and display your data, images and maps.

The development of a well organised database is an important activity for managers and researchers. The strategy you adopt will vary depending on your resources, the amount of data to manage and your longer-term objectives. In all these cases, the paths to successful database development are broadly similar.

Hardware

For individual researchers running their own show, the software and the database will often be installed on a personal computer running Windows or on a Mac with Windows emulation. Aside from having sufficient disk space and as much RAM as possible (16GB or ideally more), there are no special requirements other than that the .NET version is sufficiently up to date.

For institutions with large collections, perhaps many millions and many simultaneous users, the actual database will be stored on a server in PostgreSQL or MSSQL Server. It is important that the server is well resourced with sufficient disk space, adequate RAM and a good processor. If you try to run a large database on an inadequately resourced server, performance, under most circumstances, will be poor. Performance is broadly related to how well resourced your infrastructure is. An under-resourced server and/or client workstation leads to poorer performance.

As an example, the BRAHMS server used in Oxford has 256 GB RAM. BRAHMS rarely uses more than 50% of this memory but nevertheless, where the server is used for multiple applications, it is comforting to have some extra RAM. RAM is helpful as some categories of task are cached. Having plenty of RAM makes querying more efficient. You do not need 256GB - but try to aim high.

Disk space? These days, disk space is measured in TB. Make sure your server has adequate space bearing in mind that stores such as PostgreSQL or MSSQL Server tend to reserve empty space for database expansion. A BRAHMS database with ca. 10 million specimen records (including all the related tables) will use ca. 100GB.

Images? It’s easy to calculate the space required for images. For example, 1 million images, each 5MB in size, would require 5TB storage. Images may be stored on different servers. They can be referenced in BRAHMS as physical files or as URL references (e.g. to a media library).

BRAHMS itself will be installed on a shared drive that all users can access or on individual client workstations. You may also use remote server log in by users located on different sites. On larger networks, the set up will be fine-tuned to achieve the maximum performance, a specialised IT task that is not further discussed here.

In addition to the server where the database is stored (possibly also the BRAHMS software), the role of client workstations should not be underestimated. When you log into the BRAHMS software, the system uses the resources of local workstations. Thus, even if your server is extremely well resourced, under-resourced workstations may not perform well.

In summary, cutting corners on hardware set up is something of a false economy when it comes to established a healthy database environment, all the more so when there are large databases and many users. Institutions need to invest appropriately in managing their digital assets.

We can provide further tailored advice on hardware on a project by project basis.
Data migration
You may have data in an earlier version of BRAHMS, in Excel or Access tables or in other database packages. These data are important and can be migrated into BRAHMS. V7 databases are automatically upgraded and data in Excel can be imported to BRAHMS via RDE. Data held in other packages may require some form of migration input. However, one way or another, the idea of migration is that you maintain all the data you currently have.

Optimising data capture
Data entry efficiency (speed + accuracy) can be sensibly optimised for all projects, be they small or large. While smaller number of records can be added directly into BRAHMS, the recommended procedure for larger scale data capture is to use Rapid Data Entry (RDE). Data are added to external RDE spreadsheets (themselves portable mini-databases) and after checking, these data are transferred into the main database. RDE files can themselves be optimised for specific projects by setting up the desired fields and field order.

To take full advantage of RDE, your database can be kick-started by importing useful dictionaries of data, for example collector, taxa and geographic names. Lookup lists can be added for any field where you have a fixed set of values. Although lookup lists can be generated on the fly, it’s usually best to have these defined in advance. You are then in a position to force selection for a defined list or allow the data entry person to add new entries. A more complete range of optimising procedures is discussed in the RDE section.

Exploring your data
One of the key attractions of BRAHMS is that you can explore your data in smart spreadsheets or data grids. While the provided BRAHMS forms are great for data editing, the data grids, together with the many toolbar options, are incredibly powerful for viewing, sorting, filtering, calculating and analysis. Data grids are virtualized, ensuring they are fast even if you are working in table with millions of records.

Reports
Aside from using the data export options provided in BRAHMS, you may want to create report templates for lists, labels, loan forms and others. You can gradually build up a library of handy report templates – and many of the tricks to learn for that are reviewed in detail in the report design section of this guide. Learning to design cool reports is one aspect of mastering BRAHMS where users with interest to do so can go the extra mile, delving into complete range of report design options as laid out, for example in https://www.stimulsoft.com/en/documentation and https://www.youtube.com/user/StimulsoftVideos

Mapping
Most projects want to produce maps and again, all the procedures for creating maps using different GIS options such as QGIS are reviewed in the map section. Bear in mind that if you are online, you have access not only to the in-built ArcGIS API but also the map point location editor. One of the handiest features in BRAHMS v8 is the ability to view data records and map points together, dynamically linking these to highlight the current data record, and respect filters.

Special management areas
In addition to the powerful system-wide features and functions listed above, BRAHMS includes specialist modules for managing museums, herbaria, botanic gardens and seed banks. These modules have been developed collaboratively with numerous institutions ensuring that provide the day to day curation and research support that projects need.
Installation and updates

Licensing

To open BRAHMS, you will need either an evaluation key allowing you to test the system for 60 days or a full licence key. Both are obtained from Oxford University Innovation (OUI).

- Apply for evaluation key: https://herbaria.plants.ox.ac.uk/bol/brahms/software/evaluations
- Apply for licence: https://process.innovation.ox.ac.uk/software/p/14165/brahms/1

The key you receive will be a long text string similar to:

lgBANv3rk7HItQm8EnE5hbVL9U29vY51bS8Qcm9qZWN0OiBsb3Bc3Rhc3JjdmljIGZvbnQgRGFzdXJkbw==

If you have received a licence key from OUI, when you log into the software, simply copy the key into the licence key form when prompted.

Prerequisites and .NET

BRAHMS operates under Windows or on Macs with Parallels, Virtual Box, Boot Camp or equivalent. Your installed Windows .NET framework version needs to be v 4.7.2 or later. If it is not, BRAHMS prompts you to upgrade. If you do have to upgrade .NET, it will be best to restart your PC after. As further discussed below, ideally your workstation will have 8GB of RAM or more. RAM is used by database applications for most operations.

Other issues you may encounter

WebView2 installer

If you have trouble accessing any web related functions in BRAHMS and/or have error messages in your log file that refer to ‘Couldn’t find a compatible Webview2 Runtime installation to host WebViews. Source :Microsoft.Web.WebView2.Core’ (or similar to this), this usually implies that your PC does not have the required Microsoft webview2 components. In this case, please visit https://go.microsoft.com/fwlink/p/?LinkId=2124703 – this will download a exe runtime file MicrosoftEdgeWebview2Setup.exe which you can quickly install.

C++ redistributable
If you get an error similar to the above, you need to download the Microsoft Visual C++ redistributable as on:

https://aka.ms/vs/17/release/vc_redist.x64.exe for a 64 bit system

https://aka.ms/vs/17/release/vc_redist.x86.exe for a 32 bit system

(This will work for 2015, 2017, 2019, and 2022 versions)

** Blocked DLL files

If the copy/deploy BRAHMS install zip is opened using the Windows default extraction, this may block access to some BRAHMS files. When logging in, you may see a message similar to the above. Alternatively, your system menu may simply not display correctly – typically showing only **System**. The solution is to delete your BRAHMS software folder and then again open the zip file you have downloaded using 7z https://www.7-zip.org/download.html or another utility. Another possible explanation is your security system (e.g. anti-virus) requires you to include brahms.exe as a trusted exception.

** Software folder location

The BRAHMS software folder can be located on a drive that all users have access to, either through a share or via internet access. Alternatively, it can be installed on each local workstation/PC where it will be used. Otherwise, there are no restrictions of the location and/or name of the installation folder.

** Disk space and memory requirements

For the complete system installation (including the ArcGIS and reporting runtime libraries, the training guide and other system components) you will need about 250 MB of disk space. This does not include the space required for your data. The demo conifer database requires about 100 MB.

RAM requirements are not strictly imposed. However, as with most database systems, the more RAM you have, the more efficiently the system will operate. Firstly, this needs to be considered for the server itself. For example, the more RAM MSSQL Server has, the better. The server database, independently from the BRAHMS software, will utilize available RAM for indexing, caching and querying. In Oxford, we use a server with 256 GB RAM although BRAHMS itself rarely uses more than 50% of this. If you are using a server database such as MSSQL Server, make sure the database has access to as much RAM as possible.

The RAM requirements also need to be considered for the workstation where you are running BRAHMS from, even if the software is stored on a separate server. Running BRAHMS on a poorly resourced workstation, even if your server is well resourced, will not give the best result. For average use, the workstation you are using should have at least 8GB RAM but ideally 16GB or more.
Whether the software is on the server (above right) or on the workstation (above left), both will benefit from being well-resourced.

Installing v8

The software is conveniently provided as a single (copy-deploy) zip file.

Open the zip file to any location. **Do not use the default windows file extraction tool** as this may result in the blocked security status of some files. Please use 7z or similar.

After opening the install zip, you will have a software folder similar to that shown here. This folder also has a BRAHMS licence file. Evaluation versions do not have this licence file.

<table>
<thead>
<tr>
<th>Files/Folders</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Core application DLL and ArcGIS runtime files.</td>
</tr>
<tr>
<td>Branding</td>
<td>Branding banner image and other branding items as available.</td>
</tr>
<tr>
<td>Logs</td>
<td>Daily log files and any application error files.</td>
</tr>
<tr>
<td>Modules</td>
<td>Application DLL files linked to specific modules.</td>
</tr>
<tr>
<td>Shared</td>
<td>Shared data connection files and some other shared files.</td>
</tr>
</tbody>
</table>
Initially, no installation of additional database management software is required as BRAHMS is delivered with a default SQLite data store. Further information on using MSSQL Server or PostgreSQL is provided below.

Software and database updates

The upgrading process

Software updates are issued periodically. Users who are within their licence period are eligible to download all categories of software update.

Notification of updates with a software download link are sent to all licensed users and a summary of the update content is posted on https://herbaria.plants.ox.ac.uk/bol/brahms/software/revisions

The new software folder replaces the existing software folder. As soon as you log into any database, the system will inform you if database structural changes are needed. If databases changes are needed, you can then proceed to auto-update. The database update process uses scripts that are drawn from the BRAHMS website. You need to be online to use the update options.

If you have not updated your software for a longer period, several scripts may be needed and these are automatically run in the correct sequence. The same applies to RDE files. The entire update process is automated.

As soon as you log into a database that requires updating, the system will inform you if database structural changes are needed.

For further details on updates, refer to: https://herbaria.plants.ox.ac.uk/bol/content/software/v8/BRAHMS_upgrading.pdf

BRAHMS server access requirements for updates

If it is necessary to update the structure of your database or your RDE files, the necessary scripts to run, as determined by your current database versioning ID and that of the newly installed one, are located by BRAHMS on the BRAHMS server. You need to be online and have access to these scripts - otherwise you will receive an upgrade failure message.

Normally, access to https://herbaria.plants.ox.ac.uk should be sufficient. This is just a web server where the BRAHMS *.zip downloads are located and you should permit access to. If more specificity is required then https://herbaria.plants.ox.ac.uk/bol/content/software/vu/updates/. Please note that this URL is not directly viewable as browsing that location is not permitted and thus it would return a 'forbidden' status unless a valid zip file name is appended for download).
Logging into BRAHMS

Brahms.exe and creating desktop shortcut

The top-level BRAHMS software folder contains the file brahms.exe which you run to start the application. You can create a shortcut to this in the normal way. The shortcut on your local desktop may point to the software in any accessible location, be this local or on a drive /server that you have access to.

Note: if you have file extension hidden on your PC, the correct file to run in the one with blue database icon. There is another file called brahms.exe.config which is not the application file.

At this stage, if prompted to update your .NET version, proceed to do this and preferably, re-start your PC.

Login to the personal data store

After installation, you must initially log into BRAHMS using the Personal Data Location. The system will initially default to Windows Authentication using your Windows identity and thus you do not need to add a password.

After installation, logging in using Window Authentication to the Personal database, no password will be needed.

When you first log in, the system auto-creates an empty SQLite data store called brahms.db in your Documents/BRAHMS folder. The folder itself is created automatically. This may be on your physical PC or on a network drive with roaming user profiles. In the latter case, you will be able to access it from different work stations.

If for any reason you cannot log in under Windows Authentication, change this setting to BRAHMS Authentication on the log in form. Choose any user name and a password. Passwords are case sensitive. In this case, the user name and password will be added to the BRAHMS user file. You must remember a BRAHMS user name and password.

Logging in using BRAHMS Authentication.
First log in and database ownership

The first log in to a newly created database assigns ownership to that database. Thus, if you log in using Windows Authentication, your windows account will, initially, be the only way to open the database. Adding or editing different users is discussed in the users and permissions section.

The Database Projects Manager form opens

As initially, the default personal data store is empty (it has no database projects), the first log in will auto-open the Database Projects Manager screen with options New and Import. At this stage, you have three choices:

- Create a New database project.
- Import data from an XML folder you have been provided.
- Close this form and move on to connecting the demo or another database.

The Documents/BRAHMS folder

When you first log in, by default, a folder called BRAHMS is created in your Documents folder. This is used for the location of the empty brahms.db data store and some setup files. As discussed below, a different folder can be assigned.

If you delete the BRAHMS folder, it will be recreated when you next log in.

<table>
<thead>
<tr>
<th>File/Folder</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>brahms.db</td>
<td>The default SQLite datastore, initially empty.</td>
</tr>
<tr>
<td>datalocations.dat</td>
<td></td>
</tr>
</tbody>
</table>
Encrypted binary file storing connection strings (connections to data stores). All database project details (their names and descriptions) are stored in the data store itself. Once you connect to a data store, the database project(s) within the store are listed allowing you to choose a log in – unless there is only one database project in which case, it logs you directly in.

<table>
<thead>
<tr>
<th>localbrahms_v1.config</th>
<th>User specific configuration file holding background image mode, tag highlight colours and a few other settings. Data are stored in JSON format.</th>
</tr>
</thead>
</table>

Columns

Visible column definitions are stored here as in the species file examples:

- Full name and all calculated fields.speciesdataview.dgc
- Full name with protologue.speciesdataview.dgc
- Red List editing.speciesdataview.dgc

The .dgc extension refers to Data Grid Column. These files can be exchanged with other v8 users. Also stored are files with .lcv extensions. These store your used last column view per table.

Exports

Any files exported from BRAHMS are stored here. This includes Excel and CSV files.

RDE

RDE files are stored here by default – but you can set up separate RDE storage folders.

- Dimorthanthera_taxonomy.rde
- Field trip 2016_taxonomy.rde
- The genus Inga_taxonomy.rde

Each .rde file is a self-contained SQLite database with the RDE file metadata, the data itself, image links and edit history.

Choosing a different folder to Documents/BRAHMS

On some networks, it may be preferable to choose a different folder to Documents\BRAHMS as the default working location for storing those files normally stored in Documents/BRAHMS. For example, in some cases, especially where roaming profiles are used, the Documents folder may cause problems with file access if the path has hidden components.

In these cases and/or you prefer not to use your Documents folder, you can copy a small txt file to the BRAHMS software folder which includes a valid path name. The file must be called *UsersFolderRoot.txt*.

BRAHMS software folder with a *UsersFolderRoot.txt* file in place.

An example entry is C:\BRAHMSROOTFOLDER. In this case the folder would be created (if it is new) on the user’s local C drive. The path could also refer to shared network drive which may use drive letter or UNC file path. In this case, all users who are using the same BRAHMS software client will have a subfolder created within selected network folder. The subfolder names will reflect the user identity.
Troubleshooting on logging in

If the copy/deploy BRAHMS install zip is opened using the Windows default extraction, this may block access to some BRAHMS files. When logging in, you may see a message similar to the left-side screen above. The solution is to delete your BRAHMS software folder and then again open the zip file you have downloaded using 7z https://www.7-zip.org/download.html or another utility. Another possible explanation is your security system (e.g. anti-virus) requires you to include brahms.exe as a trusted exception.

If the error is similar to the right-side screen above, you need to download the Microsoft Visual c++ redistributable as on:

https://aka.ms/vs/17/release/vc_redist.x64.exe for a 64 bit system

https://aka.ms/vs/17/release/vc_redist.x86.exe for a 32 bit system

(This will work for 2015, 2017, 2019, and 2022 versions)
Data stores and databases

The difference between data stores and database projects

The data store refers to the location of your data. It is a physical store in a database management system separate to BRAHMS itself. For example, you may opt to store your data in MSSQL Server, PostgreSQL or SQLite. Each of these is a database management system.

![Database Management Systems](image)

How many databases in a store?

A given data store may include more than one database project. If a single store has multiple database projects (left below), the data are not mixed. If you open a data store with more than one database, the first thing BRAHMS does is ask you to select which database you want to open. You could also create a new store for each separate project (right below). The choice is an institutional matter – the result is very similar.

![Database Projects](image)

A single data store may include many separate database projects (left). Alternatively, projects may opt to create a separate database project for each database project (centre). For improved integration, related data can be combined in a single database project in a single store (right).

One database for all?

Storing museum data of different types in separate databases may not always be the best option. Consider that you want to query on all collections or taxa from a selected area or collected during a certain period or by a selected collector – based on all preserved animal and plant records, living collections and fossil records. If these data are combined in the same database, this is possible. But if the data are separated in different databases, it is harder to get the combined results. You would have to somehow combine the data after querying separate databases.

BRAHMS is designed to store and integrate data across collection categories. There is no limit to the number of records and in any case, if you want to query only the Anacardiaceae or Hymenoptera, you can do so.

Note that if data are stored in separate databases, it is possible to connect these to a single web portal via BRAHMS Online, thus combining the queries there.
SQLite requires no installation

One of the advantages of SQLite (= ‘Local file system’ in the BRAHMS documentation) is that it requires no installation. SQLite datastores can be copied onto your workstation or server either as an empty store or containing one or more databases. After linking your BRAHMS software to the store, you are ready to go.

When you install BRAHMS, it comes with an empty SQLite store file called brahms.db. This is created in your Documents\BRAHMS folder when you log in to BRAHMS after installation. If it is missing in that location, an empty brahms.db file is always created.

The demo conifer database is provided as an SQLite store. SQLite is also used for all RDE files.

MSSQL Server and PostgreSQL need an extra step

If you are planning to use one of these stores, you first need to install the required software. This is something that you would normally have done by your IT section. However, PostgreSQL and MSSQL Server Express are free and can be easily installed by yourself on your local PC.

Once the server store software itself is installed, BRAHMS has an option to create the necessary data structures directly from the Data Connections form. However, on an institutional server, you may need administrative access to MSSQL Server or PostgreSQL to do so. The procedures to do this are discussed in this guide.

Multi-user access

All data stores and databases within them can be used for multiple user access. Other than the terms of your BRAHMS licence, there is no restriction on the number of users that can simultaneously access a given store/database.

Choice of store

SQLite is intended for small to medium sized projects. It is portable and the entire data store is easily moved from one location to another by copying a single file. BRAHMS always uses SQLite for RDE files which are designed to be entirely portable, operating on a server or from a memory stick.

SQLite is less suitable for large multiple-user projects. Such projects will use MSSQL Server or PostgreSQL with appropriate security and maintenance. Having said that, SQLite can store millions of records – refer to https://sqlite.org/about.html.

<table>
<thead>
<tr>
<th>Data Store</th>
<th>Licensing</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQLite</td>
<td>Free</td>
<td>Provided with BRAHMS. Used for the default personal data store, the demo database and all RDE files. It is possible to download the</td>
</tr>
</tbody>
</table>
SQLite database browser but this is not a requirement. See https://sqlite.org/index.html.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSQL Server Express</td>
<td>Free</td>
<td>2008 R2 or later see e.g. https://www.microsoft.com/en-gb/sql-server/sql-server-downloads will function but not strongly recommended for large (tables with > 500,000 records), multiple user databases.</td>
</tr>
<tr>
<td>MSSQL Server</td>
<td>Licence required</td>
<td>2008 R2 or later see e.g. https://www.microsoft.com/en-gb/sql-server/sql-server-downloads – scalable to any size.</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>Free</td>
<td>9.3 or later see e.g. https://www.postgresql.org/ - scalable to any size.</td>
</tr>
</tbody>
</table>

Current options for data storage in BRAHMS v8.
Data connections

If you have problems connecting to a database, refer to the Troubleshooting section at the end of this section.

Introduction

The BRAHMS software is independent from any data store you choose to link to. To allow BRAHMS to access data, you need to add at least one data connection. Data connections have a name so that you can identify them. They also have properties that describe the connection. An example connection name could be ‘BRAHMS on Server 1’. The properties of the connection would include the type of data store, its physical location or address and, when needed, access permission details.

You may have one or more data connections. Connections may be to different types of store in different file or server locations. When you install BRAHMS, a default SQLite connection is added. This is called ‘Personal’ and the location is in your Documents\BRAHMS folder. Each user has their own personal data store.

All connection details are stored in the encrypted file datalocations.dat which is located in your Documents\BRAHMS folder.

Data Connections, Servers and IT help

If you plan to store your data in a locally stored SQLite file, you don’t need any IT support. However, for larger institutions with restrictions on access to servers, inevitably, you will need to have someone to provide access/permission to a server data store. Access to server databases is an institute level matter. As a project, we can advise on storage strategy. But to implement this, you may need support from a server administrator or your IT section.

SQLite connections

When you install BRAHMS, an initial connection is auto-added to an empty SQLite data store. The connection name is “Personal”. The data store has a default location in your Documents\BRAHMS folder and the data store name is brahms.db. Initially, this is an empty file with no database projects. To create a database (or databases) in this store, you will use the database manager.

SQLite connections require no special permissions to use. They do not need the installation of any extra software. In summary, you simply browse to locate the database file. This file can have any name but it will have an extension ‘.db’ as in brahms.db or mydatabase.db.

You can create a new SQLite store and/or browse to locate an existing one.
To create a new SQLite store, select **System > Manage Data Connections > New.** Provide a name for the connection. The connection provider will be Local filesystem (SQLite). Choose **Create a new file** and choose the folder location and file name as prompted.

To connect to an existing SQLite database, copy the file you have been given (e.g. ‘sampledatabase.db’) to any accessible folder location. Select **System > Manage Data Connections then New** entering a suitable connection name (e.g. ‘My Sample Database’). Select the **Browse for an existing file...** option to locate the file. **Save** this and then close the form. Finally, select **System > Sign out** then log in once more choosing the connection name you added above.

Creating a PostgreSQL connection and database

Creating a PostgreSQL database and the connection from BRAHMS to it involves a few steps. The way PostgreSQL manages the security for database connections is different to MSSQL Server.

Assuming you have installed PostgreSQL, you should be able to do everything else from within BRAHMS. Please follow the steps carefully. If you need to install PostgreSQL on your server or on your local PC, see https://www.postgresql.org/download/ or similar.

The task here is create a new database and the required database connection to your PostgreSQL server, wherever this may be.

- For the following steps, you can be logged in to any BRAHMS data connection including the SQLite personal database.
- As a first step, select **System > Manage Data Connections...** then **New.**
- Choose a **Connection Name.** This name will appear eventually in your BRAHMS login form as a data connection option.
- Choose the PostgreSQL Data Provider as the **Connection Provider.**
- Then select **Create...** to initiate the process.

The first steps are shown above.

On the **Create** form, the settings will be similar to the above. The purpose of this step is to create a PostgreSQL database – not a BRAHMS database. Confusing? It is a bit - but PostgreSQL needs to have an underlying
database created before we can go on to the next step. If you can pass this security test, you are well on the way to creating the new database.

The Server Name here is the standard representation of the IP address of ‘localhost’ on your local PC. If you are creating a connection on another server, the server name entry will be the Domain Name or IP address of the server that is hosting PostgreSQL.

The Server Port as shown here is the standard port used to connect to a PostgreSQL server. Note that while this value is configurable by the administrator of the server, it is unlikely to have been changed.

The User ID and Password entered above will be the credentials of a user who has permission to create a PostgreSQL database. Normally, this will be so called PostgreSQL ‘superuser’. The superuser will have been established when PostgreSQL was installed. This user name and password is only needed to create a new connection. It is not otherwise used by BRAHMS.

Note: it seems that if a user with permission to do so (e.g. the superuser) uses PostgreSQL admin tools to alter table structures, any other user credentials may be re-set.

Use the Test option provided to check your connection works. Assuming it does:

The next screen asks for another User ID/password – this is a bit confusing. The user ID and Password added here should be different to the superuser for security reasons. You can create new ones if necessary. This user ID/password will be added as a Login/Group Role ‘account’ on the PostgreSQL server and these credentials are then used to connect to the server and to create the actual BRAHMS database structure in a next step.

Assuming you have permission to do so, you can select an existing or add a new user ID /password here. The password you add above must have a minimum of 6 alphanumeric characters to enable Add User.

When entering a Database name, you must keep it lowercase and with no spaces.

In the next stage as shown above, choose a lowercase name for the PostgreSQL datastore – do not include spaces. This is not the name of the actual BRAHMS database – rather just a server store name. Once you select Create this Database, BRAHMS will proceed to set up an empty BRAHMS database/store inside PostgreSQL. This store will have all the BRAHMS tables, views, indexes, etc.
If this step is a success, you can then Finish and move to the final step.

Use System > Sign Out and then, on the BRAHMS login screen, choose your new connection name as added above in step 1.

When you first log in to BRAHMS, you can use Windows or BRAHMS Authentication. If using BRAHMS Authentication, do not forget the username/password you select as this will be added as the default log in credential. You can of course then proceed to add further users and passwords.

After this stage, you can use the BRAHMS options to import data from XML or to create one or more new empty database projects in the new PostgreSQL datastore you have just created. If creating a new database project, this is where you add the database name e.g. “Conifers of the World”.

The above images show the steps as they build up in the PostgreSQL manager. The first image is before we start. The middle image shows the addition of a new account name here called ‘BRAHMSUSER’. The final image is after the creation of a new database (perhaps better called ‘data store’ here called ‘mybrahmsdb’. Note: you don’t need to have access to the manager to create a database.

Creating a MSSQL Server connection and database

The processes to create a connection to an MSSQL Server database are broadly similar to those for PostgreSQL and can be done from the Data Connections option.

This example, which uses the express version of MSSQL Server, assumes you are creating a database on your own PC and thus can avoid having to use a DBA login and/or set up additional access rights. You can easily install MSSQL Server express on your local PC. When doing so, we advise you also install the MSSQL Management Studio. If you have doubts, consult your IT colleagues.

If you are using the licenced full version of MSSQL Server, you will probably be connecting to this on another server and in this case, will have to check that you either have the access to create a new store or that this is done for you and you are able to establish the connection.

• For the following steps, you can be logged in to any BRAHMS data connection including the SQLite personal database.
• As a first step, select System > Manage Data Connections... then New.
• Choose a Connection Name. This name will appear eventually in your BRAHMS login form as a data connection option.
• Choose the MSSQL Data Provider as the Connection Provider.
• Then select Create... to initiate the process.
Choose a connection name and set the provider to MSSQL

Depending on how you installed MS SQL Server, you may be able to use Windows Authentication or you may choose to use MSSQL Server authentication to access the server and create a new database. For example, if you installed SQL Express on your own PC, and you are not connecting to this from another PC/location or over the network – then windows authentication can be used. In most cases SQL Server authentication will be the best choice.

The test should lead to a 'Test Connection Succeeded' message. Note the format used to refer to your local express server.

To create a data store, the User ID/password usually are the credentials used by the DBA (Database Administrator) with permissions to create a database and user accounts on the server.

Provide a lowercase, no spaces name for the database and then Create this database

Successfully created
You can leave the User ID and Password blank if you are creating a database on your own PC and there are no administrative restrictions. Test Connection will complete the process.

- You can now sign out of BRAHMS and log in again – choosing the store name you provided e.g. My Museum Datastore. You can choose Windows authentication. If you choose BRAHMS authentication, the system will ask you to enter a user name and password. Don’t forget these.

On the first login, the Project Manager form will open. Choose New and enter a description of the project as prompted. Once completed, you can choose Load Project to open the new project in the newly created data connection.

Where the username is BRAHMS and the password (SomePassword) should be set to something suitable. The first create statement sets up a login and the second adds that login to the database owner’s role of the BRAHMS database. Once this is completed, you can setup and test a data connection from BRAHMS.
Sharing data connections

The connections that a user has and can thus choose from on their login screen, come from the file `datalocations.dat`. This file is stored in the user’s Documents\BRAHMS folder. However, in an institution with many users, the database administrator may want to share a data connection for all users on the network. This is done using the Share option on the Data Connections form. This creates an encrypted file storing the connection string. This file is added to the Shared folder which is found in the BRAHMS software folder. Any connections added to the Shared folder will be available to all users accessing BRAHMS from the same software folder. Shared files are named with the data connection title e.g. ‘Oxford Database.dat’.

VPN access and Remote Logins

If your connection string contains the appropriate entry for the server name, you can set up connections allowing users to log in from outside your institution. The connection is made over the internet. There may be an additional security requirement such as VPN login. The server administrator may also want to register the IP address of the user. Note that the MSSQL Server would have to be enabled for VPN access.

An example server name for a connection which would allow someone with appropriate access to log in from any location.

Another tactic is for a user to make a remote desktop connection to a server. Once connected in this way and with appropriate permissions, the user could clearly log in to BRAHMS and access the data store. Remote desktop connection approach is not recommended for large numbers of same time users unless the server is especially well resourced.

Troubleshooting

If you have installed the BRAHMS software on your PC and can’t find a database to open, this means that the local ‘data connections’ file on your PC has no data connections or there is a connection but it is not available. If you had a successful connection before, this may have been from another copy of BRAHMS on a different PC with its own data connection setup. Data connection details are stored on your PC and are not stored in the database or software. Note that on networks, data connections can be shared by adding the connection to shared folder in your BRAHMS application.

The default Data Connection for any BRAHMS installation is the one called ‘Personal’ on the login screen. Unless this has been somehow edited, it will point to the file brahms.db located in your Documents\BRAHMS folder. This connection does not require any special installation – it comes with BRAHMS.

What is brahms.db? This is a complete BRAHMS database structure template in SQLite format. The brahms.db file delivered with BRAHMS is empty – it has no actual databases in it – but they can be created/imported.
If there are any problems with logging to personal, please the steps below. Unless you have been provided with another database, your best bet for initial testing, is to connect to the demo conifer database. Then you at least have a system to practice on.

- Log out of BRAHMS, go to your Documents\BRAHMS folder and delete the single file brahms.db.
- From https://herbaria.plants.ox.ac.uk/bol/brahms/support/conifers - download the demo database for BRAHMS 8 and store this zip in your Documents\BRAHMS folder. This is the conifer demo database.
- Open this zip file to your Documents\BRAHMS folder. This will create a brahms.db file which contains the conifer database. You can delete the zip file.
- Now log into to BRAHMS again – choosing the data location Personal.
- Choose BRAHMS Authentication and use the user name Demo and password demo (in lowercase). These are the default log in details for the conifer demo database.

NB. If the log in results in the prompt: ‘Would you like to auto-update now?’, simply say Yes and proceed to log in again. This prompt would only occur if your software is more updated than the conifer demo as available on the website.
The database manager

Introduction

The database manager is accessed by selecting System > Manage Database projects. While the Connections Manager manages connections between the BRAHMS client and your data store (e.g. an instance of MSSQL Server or PostgreSQL, the Database Manager manages the databases in the current data store. A given data store may have one or several databases - in most case, one.

This manager provide tools to:

- Create, edit and delete database projects from the current data store
- Import a database from a BRAHMS XML folder
- Export data to a BRAHMS XML folder

The following section assumes you are already logged in and connected to a data store.

Creating a new database project

Log into the default personal store. If the Database Manager form does not auto-open, select System > Manage Database projects. On this form, Select New and enter the Project Title and a few details as requested.

Creating a new project

If you create more than one database in the same store, when you next log in to this connection, you’ll be asked to choose which database to load.

Import a database from XML

The import option imports data in BRAHMS XML format to a new, empty data store of your choice. An example is theXML folder provided for the conifer demo database or any database exported from BRAHMS v7. The conifer XML can be downloaded from: https://herbaria.plants.ox.ac.uk/bol/brahms/support/conifers. These data can be imported into a new SQLite, PostgreSQL or MSSQL Server database.

You cannot use this option to add data to an existing database.

TheXML data is always provided as a series of files in a single folder. One of the files is named DatabaseProject.xml, When you select Import, as show below, you will be asked to locate this file.
Sample BRAHMS data transfer XML folder

Choose Import to pull in data from an XML folder. This option can only be used in a newly created, empty database.

With the demo conifer database, you can choose Import Everything – in fact the edit history for this database is not provided in the XML folder.

The data are imported with progress shown on the status bar.

Export an entire database to XML

The **Export** option on the Database Manager form is used to export all data from a selected database. This option does the reverse of the **Import tool** described above. It creates a folder of XML files in a designated folder. [Refer to the section on Exporting databases.](#)
Connecting to the demo database

Introduction

The demo Conifer Database is available on: https://herbaria.plants.ox.ac.uk/bol/brahms/support/conifers

The conifer database has been provided by Aljos Farjon, RBG Kew. The conifer database includes all published conifer names with nomenclatural details, IUCN conservation codes, TDWG geographic distribution codes, species descriptions and more. It also includes specimen data across the group, almost all referenced for mapping. The database also includes sample living collections data from Oxford Botanic Garden.

Importing the demo database as XML

Refer to the instructions provided in the section above on Import a database from XML.

Connecting to the SQLite database

Rather than import the XML, you can also download a ready-made SQLite version of the same database.

Download and open zip

- Download the SQLite file from https://herbaria.plants.ox.ac.uk/bol/brahms/support/conifers
- Open the zip to create the file brahms.db
- Copy the file to your Documents\BRAHMS folder overwriting the default brahms.db file
- Log into Personal using the credentials:

 Authentication: BRAHMS Authentication
 User name: Demo (not case sensitive)
 Password: demo (lower case)
Connect to conifers in a different location

If you prefer to set up an entirely new connection to conifers, perhaps on a shared drive thus allowing multi-user access, follow these steps:

- Copy the downloaded demo database file to any folder location. You can optionally rename the file from brahms.db, for example to conifers.db.
- Select System > Manage Data Connections... then New and enter a connection name such as Conifer Database. The Connection Provider will be the default Local Filesystem.
- Use Browse for an existing file to navigate to the database file and then select Save and then Done.
- Sign out. When you next log in, change the Data Location to ‘Conifer database’ or as added above.

Browse to locate the downloaded conifer.db sample database - then save.
Managing user accounts and permissions

Introduction

Users and database permissions/access information are included and copied within a given data store. Thus, if you copy a personal data store or an MSSQL Server .bak file to another location, the user information will also be included. Passwords are encrypted.

Do not copy a database to another user with only a Windows login as they won’t be able to use that. Include at least one BRAHMS login option. RDE files do not require user login details.

View and edit the database project members list

The database project members list is opened using System > Manage Users and Permissions. This User Management table lists all users with their database memberships. Users registered in the user list who have no database memberships will not be listed in this table. A user with access to three separate database projects will have three entries.

The database members table lists all users with database membership(s). There is one entry per user per database project. Thus, if the data store includes 2 database projects and a user has access to both, the user will be listed twice in this list.

As well as providing the user name, this list indicates whether they are a system administrator, and their project role as manager or user. In Edit mode, the Project Role can be changed. The names and other fields in this grid can be searched and filtered as in any other data grid. Passwords are encrypted and cannot be seen.

Note that the System Admin option cannot be edited from this screen as this is a property of the user rather than database membership.

Editing the user list

Adding and editing users

To edit the user list, select the User List option above the database membership grid. This option is only available to System Administrators.

To add new user account, select the New user... option. The tab Add BRAHMS User asks you to add in the name details and whether they are Admin or not. The other options, Add Windows account and Add Domain User do not require that you add a user name/password as this information is known by the windows/domain
account. Select Finished after adding the name entry. Login authentication methods are further discussed below.

A note on passwords

Passwords are case sensitive and encrypted. If you forget a password there is no way to visualise it. The only solution is to get the system administrator to use the reset password option when editing a user entry.

Passwords can be reset by the system administrator.

If you are copying a database to another user, optionally delete your Windows/Domain account entries as these will be of no use elsewhere. Certainly, you need to make sure you add at least one BRAHMS user log in (ideally with Administration status) so that the user can log in. This is why the demo conifer database is distributed with the BRAHMS log in user: Demo + pw: demo.

Assigning database access to a user

Having connection access to a data store does not mean that you can open the database(s) within it. To have access to a database project or projects within a store, you must have access permission.

In the above example, a data store includes only one available project. To provide the currently highlighted user (not visible on this screen) access to this database project, use the Add-> option.

Thus, the task of the System Administrator (or in this case also the Database Manager), once users have been added to the user list, is to ensure they are given access to the appropriate database project(s).

Users roles

A user may be designated as an Administrator, Database Manager or a User. Access rights vary in each case.

When adding a new user, you can make that user a System Administrator by selecting that option on the new user form. Administrators have access to all options including adding and editing the user list.

A user can also be made Database Manager. This means that the user has access to the entire database and can assign user access to databases they manage.

To set a user as a DB Manager, select Edit mode and then use the dropdown in the Project Role field.
Login authentication methods

Three types of user login account are available. It makes no difference which is used to the options available in BRAHMS after log in. The login method does not influence the access and permissions settings.

BRAHMS User

The user can log in from any work station using a BRAHMS user name. Must enter user name and the password. The default Admin level user name and password for the sample conifer database is Demo + demo. These credentials are distributed with the conifer database.

Local Windows Account

This is windows authentication on the user’s local workstation. No user name or password needed when logging in using Windows Authentication as you have already logged in to your PC.

Domain User

Database administrators can add users based on their Active Directory domain accounts. To do this, when adding new users:

Select the Add Domain User tab. The Domain name is the name of the domain as per your active directory setup. The User name and password will be the username/password for anyone who has access to search the active directory.

Once these details have been added, the available User Login Domains can then be loaded using the Load option. There may be more than one. If the User Domain you want to use is not included (this happens on some Active Directory setups), you can type it in.

Using Surname to Find, you can then select and add users.

Issues with adding users and using domain login

Please note that in the current BRAHMS version, when a user logs onto their PC (not BRAHMS), it is necessary that they log in using the same casing for the domain and the user name as is listed in the BRAHMS user list. Or put differently, make sure that the user entries are added to the BRAHMS user table in the same case that they typically log in using. This limitation is likely to be removed in a forthcoming software update. Also, if your user’s PC log in name is different to the actual domain name, when registering users, as on the above screen, you can edit the value displayed in the User Login Domain text box when adding new users.

Access and permissions

Introduction

This section refers to access and permissions within a selected project. Each user can be assigned access rights to a selected database project. The same user may have different access rights in different databases. Permissions can only be edited by the system administrator or database manager (for databases managed).

With larger projects where there may be many users, the need to control access and editing rights to specific categories of data becomes ever more important. For example, only some users may be able to edit your central species list – while others may only be able to view and query this list.

The permissions and access settings can also be used to simplify the entire system for users who do not need to see the entire range of menu options. For example, a volunteer working on entering new museum accessions may have a BRAHMS interface that only shows the Rapid Data Entry menu.
A set of permissions can be created and saved as named permissions set. This set of permissions can then be assigned to other users.

Permissions influence the following features:

- The modules or components of modules that a user sees – modules can be completely hidden.
- Where access is provided, this can be set as Read Only or Read and Modify.
- Where Read and Modify access is given, additionally, users can be assigned access to Add, Mark records for deletion and Remove records marked for deletion.
- Additional features can be edited e.g. the ability to Merge records or Edit map points.

Editing user permissions

Open the User Management table using System > Manage Users and Permissions - then select the Access/Permissions option.

With the User Management table open, select the Access/Permissions option as shown here.

Options are divided across three tabs:

Tab 1 for Modules and Data: In this example, a permissions set ‘Sample profile’ has been created. For example, the user has Read Only access to the Taxa module. Full access is provided to the Geographic module including the ability to Edit, Add and Delete records. On the other hand, in Preserved specimens, this user can Add and Mark records to delete but not finally delete those records. Various other settings have been provided.

Tab 2 for specific actions: Various further settings can be edited per user profile.

Once you have edited the settings, you can enter a name for this set of permissions in the Apply As text box. This will be enabled when you enter a permission set name. You can assign this set to other users.

Note that the permission set name appears in the user grid.
Tab3 for Events: the options here control which users have permission to edit plant events.

Access permissions to RDE folders

Access to Rapid Data Entry folders is discussed in the section on Assigning permissions to RDE folders.

System broadcasting

The option System > User Notification... can be used to send a message to all currently logged in users, as long as these users are using the same client software. While this feature can be used to distribute any message to users, one of its key purposes would be to advise users to log out so that the system can be updated.
Notifications

Notes: Only one message can be active. Any current message must be cleared before a new one can be created. The message will only appear on screens of users accessing BRAHMS from the same installation folder.

Message Only Mode: This message will appear when sent and will re-appear each time the user logs in until the message is cleared.

Auto-Shutdown Mode: Normally only used when replacing BRAHMS software in a folder accessed by multiple users. The message appears when sent and will also initiate an automatic shutdown of the users application (at the time of sending plus the number of delay minutes). A countdown is displayed on the BRAHMS status bar. Shutdown can be cancelled by clearing the notification at any time before the shutdown time is reached.

A shutdown notification will prevent BRAHMS being run until the notification is cleared.

Access is re-enabled by deleting the file ‘notifications.json’ found in the BRAHMS installation folder, or by running BRAHMS from the command-line using the ‘ClearNotification’ option.

<table>
<thead>
<tr>
<th>Notification Title</th>
<th>Auto-Shutdown</th>
</tr>
</thead>
</table>
| Notification Message | The BRAHMS software is being updated.
Please save any edits you are making and exit BRAHMS as soon as possible.
BRAHMS will auto-close in approx 5 min. (a countdown is displayed on the status bar). |

- Auto-shutdown mode
- Message only mode

Auto-Shutdown Delay: 5 (mins)
BRAHMS setup options and language

Introduction
Setup options are accessed from System > Options… The options are gradually expanding, those currently available are listed below. Note that user permission options are used to define user level access and permissions.

System background
To set your BRAHMS application background image, select System > Options > Background Image. You can display background images from your own image gallery choosing the relevant BRAHMS setup option.

(NB The Bing image of the day option has been removed for now until we can clarify potential copyright issues)

Language
BRAHMS is international with respect to the interface and the storage of data. Translatable resources files are used to manage interface components. This means that the entire system is easily translated to any language. The available languages are listed on the log in form under Options. If you require a different language, you can request this from the BRAHMS project.

All system text that appears in the BRAHMS application is drawn from translatable resource files.

Formats for taxa names and authors
Authors
You can control how author names appear in calculated species names. For example, you may want to exclude authors or only include the lowest ranked epithet author name.
Note: If author names are excluded by default, you can override this on a name by name basis using the Force Author options found on the main Species form:

No force: Alnus incana subsp. rugosa var. occidentalis
Force all: Alnus incana L. subsp. rugosa R.T.Clausen var. occidentalis (Dippel) C.L.Hitchc.
Force last: Alnus incana subsp. rugosa var. occidentalis (Dippel) C.L.Hitchc.

Name epithets
Hide unwanted sections on the species form.

Regisering your institution code
In the System > Manage Users and Permissions table, you need to use a lookup to set the User’s Institution Code. The code should already be added to your Management > Address book and thus be available to add to the user file.

Shared folder locations
Certain files can be shared between users. These include saved columns views, documents and images. Shared folders should be accessible to all users. For further information on sharing column views see section on saving views.
Mapping

The mapping tab is currently used to enter the location of the exe files for GIS options. By default, BRAHMS will try to locate the GIS installations using your computer’s registry entries but sometimes, this is not possible. The settings here assure that BRAHMS can locate the software.

GIS exe locations.

Modules

The settings here can be used by individual users to control the main menu options they see. Note that the database manager may apply restrictions using the Access and Permission settings. The access and permission settings override the user module settings.

Banner image

The selected banner image appears through the system for example on all form headers. The image is stored in the file banner.jpg in the software Branding folder. After changing this file, log out of the system then re-login.
An example banner in use.

Supressing form banners

As form banners use up screen space, it can be convenient to hide these banners by default rather than hiding the banner manually from the opened form.

All forms have a Show Banner option. Form banners are on by default. Use the set-up option provided to hide banners by default.

Background image

Use the settings here to choose the application background image.
Choose your background image setting. Unfortunately, Bing image of the day is restricted to developers due to copyright restrictions. Using My images, you can register as many images as you wish to display in a cycle. You can use the controls at the bottom of the main application window to pause step through your images.

Font settings

The settings here control the font name and size used through the system.

Choose any font and text size. You can restore the default settings.
Grid Options
- Adjust tag colours for dynamic record colours
- Choose your preferred data grid line options
- Suppress column header sorting

Tag Colours
Tagging and editing tag colours are discussed in the Tagging section of this guide.

Data grid line options
Alter the appearance of your data grids.

Column sorting
Further information is provided in the section on sorting records.
Data grid fundamentals

Introduction to data grids and their performance

Data grids present data from your database tables on your screen in spreadsheet format. The grids come with a context enabled menu ribbon and toolbar options, rather like MS Office applications. The grids include data from the currently selected table but they also pull in data from related tables as required. For example, with Collection Events, many of the data columns you see are from related tables such as the taxa, geography and people tables. By default, data are not presented in any recognisable sort order.

Some data grids display data from many related tables. These table relationships and the data they present on your screen are managed by various layers of the BRAHMS system starting with the DBMS itself where the tables, their indexes and relationships are managed and then ending up as data on your screen. One of the functions of BRAHMS is to gather these data together, correctly related, and allow you to browse through your data.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Collection</th>
<th>Profile</th>
<th>Subs</th>
<th>Collection Day</th>
<th>Collection Month</th>
<th>Collection Year</th>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jamieson, E. J.</td>
<td>6039</td>
<td>19</td>
<td>5</td>
<td>1963</td>
<td></td>
<td>Widdingtonia schwarzii</td>
<td>(Jarrah) Wast</td>
<td>Cupressaceae</td>
</tr>
<tr>
<td></td>
<td>Rawbald, G.</td>
<td>i.a.</td>
<td>10</td>
<td>10</td>
<td>1980</td>
<td></td>
<td>Picea abies (L.) H. Kunt. var. abies</td>
<td>Picea</td>
<td>Picea</td>
</tr>
<tr>
<td></td>
<td>Miehe, G.</td>
<td>577</td>
<td>5</td>
<td>9</td>
<td>1977</td>
<td></td>
<td>Juniperus communis L. var. scopulorum</td>
<td>Cupressaceae</td>
<td>Juniperus</td>
</tr>
<tr>
<td></td>
<td>Chen, Y.C., Lien, Y.Y.</td>
<td>141</td>
<td>27</td>
<td>11</td>
<td>1994</td>
<td></td>
<td>Juniperus chinensis L. var. taiwanensis</td>
<td>Cupressaceae</td>
<td>Juniperus</td>
</tr>
</tbody>
</table>

A typical data grid, here from collection events. The data in this grid example come from several tables: Tags are stored in a user-specific tag table; collector names come from the people/name-strings table; and the taxa fields some from the family, genus and species tables.

As well as using the resources of the computer storing the database, often a server, these activities are optimised to take advantage of the resources of the workstation you are working on, notably the available RAM. With large databases, the data should be stored on an adequately resourced server. With personal databases, the database and BRAHMS software are likely to be on the same computer.

Clearly, the system cannot bring all the data from large tables into view or into your workstation memory at one time. There may be many millions of records in a single table. Rather, it pulls data from the database store as you move up and down the data grid. The process used is called data virtualization. In fact, more data are pulled from the database than you can see at one time and this smooths out the process of browsing.

If you page down through a large table, you will periodically see a small triangle of points displayed in the bottom right corner of the data grid. This indicates that the system is pulling more data from your database and supplying these data to the BRAHMS data grid. If you rapidly page up or down through the data, the data triangle appears more frequently. If the triangle seems to spin for a longer period, it implies the server is busy.

The data access triangle indicating that the system is busy pulling new data from your database into the grid.

If you are working with large tables, for example those with > 500,000 records, you will experience longer delays if you attempt to drag the grid vertical scroll bar up or down. This behaviour is well documented in virtualized data grids. In practice, it is not normally necessary to use the vertical scroll bar. In any case, to locate data effectively, you should use one of the filter/query options.
Working on a small screen?

Note: if you are working on a small screen, toolbars may collapse in the manner shown below.

![Normal screen.](image1)

![Small screen. Where toolbars are collapsed as with Tag, Calculate and Import/Export above, clicking on the toolbar option lists the hidden toolbar options.](image2)

Using data grid tables

Opening and closing tables in data grids

By default, BRAHMS uses versatile data grids with context sensitive toolbars to browse, locate, select, sort, edit, query and analyze your data. Data tables are opened using a single click on the selected menu entry. The use of forms is discussed in the editing section.

- On the **Taxa** menu, click once on **Families**.

When a table opens, the toolbar will usually change to **Data Tools** as this is where you will likely find what you need to do next. For taxa specific tools or if you want to open another taxa table, return to the **Taxa** menu - or another menu option as required.

- To close a table, select X on the table Tab (as displayed above the data grid). Alternatively use **Alt+X**

Opening multiple tables

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#multiple

You can open and utilise different tables at the same time. The task here is to open the main family, genus, species and collection events tables.

- On the **Taxa** menu, click once on **Families**.
- Return to the **Taxa** menu and click on **Genera**. Repeat this now for **Species**. Note that each time you open a table, the **Data Tools** toolbar is activated – so you have to return to the **Taxa** menu.
- Finally, on the main menu, select **Collections** and choose **Collection events**.
Each table has a tab which can be selected to view the data in that table.

With the opened tables organised in this way, the problem is that you can only view one table at a time. The next task explains how to resolve this.

Docking tables

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#multiple

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#opendocklink

To view the tables opened in the last exercise at the same time, you can use the docking and undocking features. Each table can be detached from its centrally docked position and docked to the side, above or below another table – or dragged off the application to a different monitor. Forms, images, external web sites, maps, query tools and more are all dockable.

Positioning tables and other items takes a little practice as there are many potential docking options. It also depends on how many monitors you have available. The tasks here assume only one monitor – but if you have two or more, take advantage of these to display tables fully undocked.

- Using your mouse, drag table tabs to undock them. This can take a little practice to grab the tab correctly.
 When you drag any table to undock it, a series of yellow ‘docking boxes’ appear. The challenge is to drop the table on one of the docking options – the central box will redock the table as it was.
- As a first try, drag the genus and species tables and re-dock by placing and releasing your mouse pointer over one of the yellow docking points.

Here the genus table has been undocked and is floating above the other tables. And the species table is about to be docked to the right.

- You can repeat this process with the collection events table, docking elsewhere - or move it to a different monitor.
The various tables rearranged with collections events dragged off the main application

Dock position options vary depending on the windows opened. Some experimentation is required.

Setting grid appearance

System Fonts and grid lines

As discussed in the System settings section, you can configure grid font, text size and grid lines using the options on System > Options.

Header wrapping

You can optionally wrap column headers when the column width reduces. Header wrapping suits some users, not others.

If enabled by default on System > Options > Grid Options, a user can always override header wrapping using the option provided on the Grid Tools toolbar.

Navigation and function keys

Navigation

There are a few tricks to learn to move efficiently between columns and rows in BRAHMS data grids. Most of the functions used in v8 are similar to those used in Office applications such as Excel.
BRAHMS draws data from the data store into the grids, and presents your data with smooth scrolling and low-lag data virtualization, storing as much data as possible in memory. As you scroll up or down, BRAHMS retrieves the relevant data to memory and refreshes the opened grid.

- Select **Collections > Collection Events** to open the events table. Activate the grid by clicking in any cell. The default is read-only mode, nothing can be edited.

<table>
<thead>
<tr>
<th>Action in non-edit mode</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move to the next / previous column</td>
<td>Right / Left Arrow</td>
</tr>
<tr>
<td>First/Last column</td>
<td>Home / End keys</td>
</tr>
<tr>
<td>First/Last row</td>
<td>CTRL Home / CTRL End</td>
</tr>
<tr>
<td>Next /Previous row</td>
<td>Down / Up arrow</td>
</tr>
<tr>
<td>Scroll up and down</td>
<td>PgUp / PgDn</td>
</tr>
<tr>
<td>Select or activate a column or cell</td>
<td>Click in the cell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action in edit mode</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move to the next / previous column</td>
<td>TAB / Shift TAB</td>
</tr>
<tr>
<td>Next /Previous row</td>
<td>Down / Up arrow or use Alt+Arrows in memo or numeric fields</td>
</tr>
</tbody>
</table>

Function keys template – keyboard short cuts

You can see the Function Key assignments by selecting **Shift+F1** which opens the F Key template. Before selecting **Shift+F1**, click anywhere in a data grid. Sort list of functions by clicking on columns.
<table>
<thead>
<tr>
<th>Modifier</th>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Toggle records delete flag and move to next record</td>
</tr>
<tr>
<td>Control</td>
<td>E</td>
<td>Toggle edit mode for the current grid</td>
</tr>
<tr>
<td>Control</td>
<td>End</td>
<td>Go to last row and column</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td>Go to last column</td>
</tr>
<tr>
<td>Shift</td>
<td>F1</td>
<td>Toggle this list of shortcuts</td>
</tr>
<tr>
<td>Control</td>
<td>F11</td>
<td>Deactivate all currently applied filters</td>
</tr>
<tr>
<td>Shift</td>
<td>F11</td>
<td>Set current cell value as a quick filter</td>
</tr>
<tr>
<td>Alt</td>
<td>F11</td>
<td>Create grid column range filter</td>
</tr>
<tr>
<td>Shift</td>
<td>F12</td>
<td>Append current cells value to quick filter list</td>
</tr>
<tr>
<td>Shift</td>
<td>F2</td>
<td>Toggle grid form visibility</td>
</tr>
<tr>
<td>Control</td>
<td>F2</td>
<td>Toggle Sigma summary visibility</td>
</tr>
<tr>
<td>Alt</td>
<td>F2</td>
<td>Toggle Sigma summary (+) visibility</td>
</tr>
<tr>
<td>Shift</td>
<td>F4</td>
<td>Copy and increment numeric field from record below (edit mode only)</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>Copy field from record below (edit mode only)</td>
</tr>
<tr>
<td>Control</td>
<td>F4</td>
<td>Copy current record to a new record (edit mode only)</td>
</tr>
<tr>
<td></td>
<td>F5</td>
<td>Refresh data grid</td>
</tr>
<tr>
<td>Control</td>
<td>F5</td>
<td>Remove any existing sorts</td>
</tr>
<tr>
<td>Control</td>
<td>F6</td>
<td>Untag all records in the grid</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td>Toggle records tag and move to next record</td>
</tr>
<tr>
<td>Shift</td>
<td>F6</td>
<td>Tag all records in the grid</td>
</tr>
<tr>
<td>Shift</td>
<td>F7</td>
<td>Toggle grid cell content viewer visibility</td>
</tr>
<tr>
<td></td>
<td>F7</td>
<td>Toggle Zoom visibility</td>
</tr>
<tr>
<td>Shift</td>
<td>F8</td>
<td>Cycle column auto-fit widths</td>
</tr>
<tr>
<td></td>
<td>F8</td>
<td>Toggle column manager visibility</td>
</tr>
<tr>
<td>Control</td>
<td>G</td>
<td>Toggle visibility of grid data grouping area</td>
</tr>
<tr>
<td>Control</td>
<td>H</td>
<td>Toggle Find and Replace</td>
</tr>
<tr>
<td>Control</td>
<td>Home</td>
<td>Go to first row and column</td>
</tr>
<tr>
<td></td>
<td>Home</td>
<td>Go to first column</td>
</tr>
<tr>
<td>Alt</td>
<td>I</td>
<td>Copy and increment numeric field from record below (edit mode only)</td>
</tr>
<tr>
<td>Control</td>
<td>K</td>
<td>Copy current cell value to clipboard</td>
</tr>
<tr>
<td>Control</td>
<td>L</td>
<td>Open value look-up for a read-only field if available (edit mode only)</td>
</tr>
<tr>
<td>Alt</td>
<td>M</td>
<td>Toggle magnifier window</td>
</tr>
<tr>
<td>Control</td>
<td>N</td>
<td>Add a new record</td>
</tr>
<tr>
<td>Control</td>
<td>P</td>
<td>Toggle grids print preview visibility</td>
</tr>
<tr>
<td></td>
<td>PgDn</td>
<td>Scroll down</td>
</tr>
<tr>
<td></td>
<td>PgUp</td>
<td>Scroll up</td>
</tr>
<tr>
<td>Control</td>
<td>R</td>
<td>Toggle Reporter visibility</td>
</tr>
<tr>
<td>Control</td>
<td>T</td>
<td>Show tagged records only</td>
</tr>
<tr>
<td>Control</td>
<td>U</td>
<td>Show my data only</td>
</tr>
<tr>
<td>Alt</td>
<td>V</td>
<td>Toggle visibility of record verification tool</td>
</tr>
<tr>
<td>Alt</td>
<td>X</td>
<td>Close the active grid view</td>
</tr>
<tr>
<td>Alt, Control</td>
<td>Z</td>
<td>Toggle grid cell content viewer visibility</td>
</tr>
<tr>
<td>Alt</td>
<td>Z</td>
<td>Toggle Zoom visibility</td>
</tr>
</tbody>
</table>

Adjust, save and share grid column views

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#columnviewvideo
Adjusting data grid views

When you open a table, the default data grid fields will be visible. You can adjust the field views using the Column Management options. With any table opened:

- Select Grid Tools > Manage Columns…

The Column Management Tool allows you to select visible columns.

Note that on this form you can use the Select/Deselect all option to quickly edit the selections. For example, you can deselect all and then choose the columns you want one by one. Also note the Filter option which is useful to quick locate fields in the list.

Another handy option is the Hide Current option on Grid Tools – this hides the currently selected field. If you click on this option again, it will hide the next column in the grid.

You can also right-click on any of the column headers. This opens a dialogue form with options to show hidden columns and alter the column order.

Saving data grid views

Multiple data grid views can be saved per table. Once you have designed a useful selection of fields, you can save this using the Save As option on the bottom of the Column Manager form. This will ask you to provide a name for the saved view. You can also save views using Save Layout on the Grid Tools toolbar.

Default view file types and folder location

By default, all saved view files are stored in your Documents\BRAHMS\Columns folder. In this folder, you may find the following file types:

- .lcv files are for your last column views, one per table.
- .dgc file are for your saved data grid views.

Deleting data grid view files

To delete any data grid view, go to the view file folder location and simply delete the physical view file.
Sharing saved grid views

As an institution, you will likely want to set up commonly used grid views for different tables and share these with all system users. To do this, you simply copy the grid view files from the default Documents\BRAHMS folder into the BRAHMS application folder Shared/Columns.

Views moved to the BRAHMS application Shared\Columns folder will be available to all users. These views have (shared) appended to the view name.

Selecting a saved view

On the Grid Tools toolbar, all saved views are listed and can be selected using the Layout dropdown. Here you will find, together with any views you have saved:

- Default Columns: returns the grid view to the system default.
- Last Auto-Saved: shows the view selected when you last closed the table.

Sorting records

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#sorting

The ability to sort records, aside from being vital for reporting, is also useful to simply locate records and to find errors.

Column sorting

Enable column sorting

With column sorting enabled, you can quickly sort data grids by clicking on a column header or, as discussed below, select multiple headers. However, in very large databases, you may want to prevent users ‘over-clicking’ on column headers, sometimes when they simply want to select a column rather than sort.

Column sorting can be enabled/disabled by default for all users using System > Options > Grid options
Enable column sorting by default by setting the option on System > Options > Grid options.

If disabled, a user can override the default settings using the options provided on the Grid Tools toolbar.

Sort on single or multiple columns

If enabled, tables can be sorted on single columns by clicking on the header, **Shift + Clicking** on multiple column headers or using the Sorting Tool.

- Select Taxa > Genera to open the main genus table.
- Click once on the Family column header to sort A-Z. Click the same column header again to sort Z-A. Click a third time to remove the sort.
- You can combine as many columns as needed using **Shift + Click** on columns headers.

![Example of single and multiple column sorting]

Sort by Last Added and Last Modified

You can quickly sort the records in the current table most recently added or modified using the options provided on the Sort menu. These records will come to the top of the table.

![Example of sorting by last added and modified]

Select one of these sort options to see the most recently added or edited records.
Sorting species in Natural Order

Species records can be sorted so that the names come in AZ order regardless of which epithets are added.

The names on the left are sorted by genus + species. Those on the right are sorted using the Natural Species Sort option.

Saving complex sort commands

- Now open the **Sorting** tool. Here you can add fields of any type to create complex sorts. You can save complex sorts using the **Save** option provided.
Using the sort form, any combination of character, numeric, date and logical field can be selected to sort your records. Complex commands can be named and saved for future use.

Sorting collection events by collector and number

Collection event field numbers are alphanumeric and thus, by default, sorting the field number column AZ gives an incorrect sort order.

To display this field, select Grid Tools > # Calc Fields

You could now sort the collection events table on the Collectors + Field Number (sortable) fields but in reports, still refer to the column Field Number.

Date sorting

You can sort records on the audit fields Created By, Created On, Last Modified By and Last Modified On and such sorts are useful for a variety of purposes. When you add a new record, the data grid is auto-sorted on the Created On field. But you may find it useful to sort on this field (click on field header) at other times, perhaps in combination with other fields.

If you want to sort collection events by date, sort on year, month and day in that field order (shift-clicking on fields for multiple selections).

Sorting in reports

Also note that you can add sort commands to reports – thus avoiding the requirement to sort your data before reporting. Also note that you can use sort functions in reports, for example, sorting an alphanumeric text field numerically. Further information is provided in the Reports section.
Tagging functions

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#tagging

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#tagsandmaps

What are tags?

Tagging refers to the addition of a single character to the TAG field. This field is available in all tables in the first position. Tagging has multiple uses throughout BRAHMS with record selection and grouping. While the default tag symbol is *, you can tag records with different symbols or numbers. Each of these can be assigned a colour.

Tags are user-specific, thus one users’ tags do not interfere with those of another working in the same table. This is achieved by holding tags in a related table that includes the table name, the record GUID, the tag character and the user ID.

Select System > Options > Grid Views/Highlighting to edit the default colour options.

How to tag and untag individual records

You can use the toolbar option (large tick icon), press F6 and or, if you are not in Edit mode, double-click a record. If you are in Edit mode, you can double-click in the Tag field.

Clicking on the Tag toolbar option (or the F6 key) adds the selected symbol to the TAG field. The tag toolbar dropdown provides further options.

Tag all, counting, filtering, clearing and inverting tags

The Tag toolbar dropdown provides a list of handy tagging options.
Transfer tags
Copy tags to child or parent records, e.g., species tags can be copied to all collection events, specimens and det history records. Or you could tag all species of tagged collection events.

Count tags
A simple count of all tagged records.

Filter on tagged
Show only tagged records

Tag all
Tag all records in table – respecting any filters

Clear all grid tags
Remove your tags from all tables – does not respect filters

Clear current grid tags
Remove your tags from the current table – respecting current filters

Invert tags
Tagged records are set to no tag; records that had no tag are tagged *

Tag with
Choose tag symbol from list

Tag groups
You can manage and save your tagged records using the Tag Group Manager. This allows you to save tags for any table to named tag groups. You can create as many tag groups as you need per table. See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#taggroups.

To create a tag group in any table:

- Tag the records using one or more tag symbols.
- Select Tag > Tag Groups on the Data Tools toolbar.
- Select New Group and add a Group name at the top of the form. Then Save the new group.
- Ensure the new group entry is selected in the left side pane of the form and then select Save Tags. This will add the tag details to the newly created group.
- Close the Tag Group form.
- You can restore these tags at any stage later on using the Load Tags option.

Creating a new tag group
An example of Tag Groups. In this example, records with Red list code EN VU and CR have been tagged with the symbols 1, 2 and 3 respectfully and these tagged records have been saved to a group called ‘Red List EN VU and CR taxa’

Tag Transfers

The ability to transfer tags between related tables opens up numerous options for record selection and processing. In summary:

- You can copy tags DOWN from a table to all the child records in related tables, optionally extending this to all descendant child records in all related tables.
- You can copy tags UP from a table to all the parent records in related tables, optionally extending this to all ascendant parent records in all related tables.

Select **Tag > Transfer tags** on the Data Tools toolbar.

Example 1. Tag some species records and then transfer the tags DOWN to all collection events and garden accessions of those tagged species. Or extend this to all specimens, determinations, garden plants, seed records, etc.
Example 2. Tag some species records and then transfer the tags UP to all genera of those tagged species. Or extend this to all genera, families and higher classification records for the tagged species.

Example 3. You may have created a tag group in your species table for ‘Medicinal plants’ or ‘Native species’. Having restored the relevant tags to your species table, it would then be possible to tag all living plants in a garden database that are medicinal or native. Equally, you could tag all collection events and the specimens.

Example 4. Creating a checklist for species in a map area. In collection events, you could use the map search to select collection event records. After tagging all the records in the grid (auto-filtered to the map search area), these tags could be transferred up to the species table. In the species table, you could now select the tagged records and use these to build a checklist.

Tag matching records

Using the **Match/Transfer** option, you can tag records in the open table that match criteria in a selected Excel XLSX table. This option is described in the **Match/Transfer** data section.

Record Zoom and Cell options

Zoom option

The Zoom option displays the contents of the current record as a vertical list of fields and data values in a side window. This is a handy way to see all the data added to the current record. You can select to include or exclude fields with no values.

It also provides a useful way to navigate to data grid columns - double-clicking on a field name locates the column. If the column is not currently visible, it will be set to visible.

The Record Zoom window. Double clicking on any field name in the Zoom window (here Family) locates the selected column in the data grid.

Cell option

The Cell option on the Zoom dropdown opens a docked window displaying the value of that data field. The window content updates as you move field or record. Also see the copy options in the section **Copying cells and records**.
Here, the Zoom window is opened but filtered to show fields including the text ‘col’. Also, the Cell Zoom window is opened and conveniently docked below the Record Zoom.

Column summaries

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#colsum

List values with totals for the selected column

The column summary option lists the different values in the selected column and providing the total number of records per value.

- Select Collections > Collection events.
- Locate and click in the column # Full Name and then select the Summary option on the Data Tools toolbar.

Here, the summary shows the number of collection events per species. Moving to a different column will update the summary – assuming Auto-update on column change is selected. Click on the summary columns to sort by field name or count.

You can now open any table and test this function in any column. As you click through different columns, the summaries auto-update unless the form option Auto-update on column change is disabled.
Application of filters

The Column Summary tool also allows you to select values to filter on. You can select one to many of the values in the summary list then Apply Filters.

The summary option can also be used to apply filters on one or more selected values.

Value merging

The summary tool also allows you to merge ‘same data’ values, typically where there are multiple entries (e.g. spelling errors) of the same value. Value merging is discussed in a separate section.

Multi-Column Analysis

The multi-column analysis tool allows to select any columns that are set to visible in your grid view and then total up the number of records for each combination of records. Thus, if you choose family, country and year, the totals will be the number of records (in the current table) per different family+country+year combination.

The Setup/Designer tab provides option to select and adjust columns including column order.

An example in the species table. You can sort and filter on the analysis results. The results can also be exported to Excel. Using the Filter option, you can filter the main data grid to the selected analysis row values.

See below on how this tool can be used to mark record duplicates.
Locating and marking duplicated records for deletion

Over time, your database may build up a number of duplicated records which you may want to remove. This does not refer to the word ‘duplicate’ in the sense of duplicated collections (specimens, plants seed, and the like) but rather to records where the same information has been entered more than once.

Duplication can happen for a variety of reasons. The simplest reason is that a record is accidently added more than once. Another cause would be if an RDE file has been imported more than once or there may have been a problem where an RDE had to re-imported. With some categories of data, BRAHMS prevents duplication – but in other cases, it is not possible. An example would be with plant event records.

You can use the multi-summary tool to identify duplicated records in any table by selecting all the data columns you wish to compare. The tool totals up the number of records that share exactly the same values for all the fields you include in the summary. If the Count is > 1, then the data are duplicated based on your selection of columns.

Bear in mind that if you select too few columns, the duplication is not necessarily a true duplication. For example, if you choose family + genus + species name in the collection events table, the count will reflect how many collection event records have the same family + genus + species. However, if you choose e.g. Collector + number + Day + Month + Year + Genus + Country – and still have duplication, this may suggest there is a genuine duplication.

Once the multi summary is complete, you can use the Mark Duplicates option to mark duplicated records for deletion (i.e. adds * to the DEL field). This only takes place for records where the Count value is > 1. And then you could proceed to delete these records in the standard way.

Use Mark Duplicates to flag up records for deletion.

Note that you can use the Filter option to auto-filter to records in the grid that match the current selection. This is a useful way to check that the process has worked as expected for you.

Tree views

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#treeviews

Tree Views provide an excellent way to locate, explore and filter data as well as tracking down spelling errors. The Tree View designer allows you to create and save your own views with up to 10 hierarchical levels, and as many views as you need per table. Once opened, you can then use the locate and filter options offered, for example ‘filter on selection’ when you click on any tree level.
This example shows a single level view to explore by genus. With ‘Filter on selection’ selected, clicking on a Tree View entry filters to that value and updates any linked data, in this case, the map. The windows have been docked and re-sized.

- In the demo Conifer database, select Collections > Collection events - select the Tree View option on the Data Tools toolbar. Default trees are provided for some tables.
- On the form, select Tree View Designer and choose Genus. You can construct views with any fields you need, and in any order.
- Optionally name and save this view – or simply load the view using the option provided.
- Select the option Filter on selection at the bottom of the form. Clicking on and genus will now set a filter to that name. Click on a genus to set the filter.
- Now, on the main menu, select Maps and choose ArcGIS in BRAHMS. This will draw a map of your selected genus based on the available collections. Do not restrict to Tagged only.
- Clicking on a different Tree entry will now update your data grid and map.

By default, the Tree View and the Map are docked together. You can drag the lower screen Tree View tab to separate it and arrange your windows as shown in the example above.

Saving data to Excel or CSV

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#exporting

Data are easily exported to Excel spreadsheets using the Tag -> Excel or CSV options on the Data Tools toolbar. Exporting works only with tagged records and will export the currently selected columns.

In this task, export specimen data from BRAHMS, sorted by family and species name, restricting the export to some columns and the filter selection to holotypes.

- Select Collections from the main menu and choose ‘Preserved Specimen’ using the Category drop down.
- Select Specimens to open that table.
- Now select Grid Tools > Manage Columns and here you can remove any columns you don’t want to export and sort the table as wanted.
- Locate the Type Category column and enter ‘Holo’ or ‘holo’ in the filter bar to apply a filter on Holotypes.
- Select Tag > Tag all
- You can now use the Export option to save the tagged records.
Using the grid filter option to restrict to specimens that are holotypes. This example from the Conifer database also restricts to China.

You can list all saved files using the View option on the Export Data toolbar section.

Copying cells and records

Copy records

In data grids, you can click on a record to select the record. You can use Shift Click to select groups of contiguous records or CTRL Click to select individual records – the same as in other packages. Selected records are displayed in a shaded colour. Copy the selection using Ctrl+C. You can then paste Ctrl+V these records elsewhere, for example to Excel. Be sure to select the correct paste option to format the data appropriately.

Copy Cells

You can copy the value of a cell to the clipboard using the toolbar option **Copy Cell Value**. The short cut key for this is Ctrl+K. This is a handy way to copy GUID and other data values.

Note that by using Windows Key + V, you can list recently copied data values on your clipboard. You may have to allow Windows to do this.

Data grid right-click menu

A right-click on the data grid provides access to a handy list of options that are otherwise available on the Grid Tools and Data Tools toolbars.
Short cut menu opened using a right-click anywhere in the data grid. Some options relate to the current column or cell value.

Field level help

While some default field level help is provided with BRAHMS, for convenience, as from v8.5.1, projects can add and edit their own field help text. With any grid opened, use the shortcut Ctrl+I or select Grid Tools > Field Help. The field help form stays open and updates as you switch fields in the data grid.

Adding or editing help text can be useful if you want to advise users on your own data standards, rules and formats – or simply provide guidance on what data to add to a specific field.

If a user has permission allocated on the System > Users & Permissions > Specific Actions > Editing Tools > Can edit field description text, then that user would be able to edit the field level help text using the Edit Description option provided at the bottom of the text form. Note that Admin level users can always edit the help text. Editing text will overwrite the default text that may have been provided with BRAHMS.

The field help form also provides key details on the selected field properties such as its physical table name, max size and read-write status.

Field level text is stored in your database and is visible to all users. As this help text is stored in your database, it is never overwritten when you update the software. Thus, it is equivalent to data in any other table.

Editing help text for the field Commemoration Category in the main plants table.
Find, Filter and Query

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#datagridfilters

Introduction

Filter and query are one and the same thing in BRAHMS. They restrict the data in the opened table using one or a combination of selection criteria. You can then view, report, map, analyse or export these data. Procedure you can use to filter/query and locate your data are described in this section.

Quick filter options

Filter to show your own edits

To show only those records you (as the currently logged in user) have edited, select the Filter option dropdown have Show my edits only. This will add to any other filters you may have in place.

Restrict to tagged

The Show tagged only option (see above screen) filters on tagged records adding this filter to any other filters you may have in place.

Display active filter criteria
Queries using the data grid filter bar

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#explore

Use Shift + F1 to open help with grid filter options.

- Open the main file collection events table using **Collections > Collection Events**.
- Enter values into the top filter row as shown below. You can use operators =, <, >, <=, >= to combine values using capitalized AND/OR statements.
- You can also use keywords NOT =Null (or use <> NULL) to show non-empty strings or =NULL to show empty strings.

![Example filter grid](image)

Using the grid filter row, you can add values to as many columns as needed.

![Additional columns](image)

Setting a barcode range using the grid filter row.

- You can use * to select ‘starts with’ and ‘ends with’, thus:

![Barcode range example](image)

Setting a filter where collector name starts with ‘ter (left) or includes ‘ter’ (centre) and right, where the genus ends ‘illa’.
Grid filter-bar syntax examples

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cyn:</code></td>
<td>Entering cyn in the FAMILY column would include the family Apocynaceae, amongst others.</td>
</tr>
<tr>
<td><code><>pinaceae:</code></td>
<td>Entering <>pinaceae in the FAMILY column would exclude the family Pinaceae.</td>
</tr>
<tr>
<td><code>NOT pinaceae:</code></td>
<td>Entering NOT pinaceae in the FAMILY column would (as using <>) exclude the family Pinaceae.</td>
</tr>
<tr>
<td><code>*rus:</code></td>
<td>Entering *rus in the GENUS column would include all genera ending rus.</td>
</tr>
<tr>
<td><code>rus*:</code></td>
<td>Entering rus* in the SPECIES column would include all species starting rus.</td>
</tr>
<tr>
<td><code>=excelsa:</code></td>
<td>Entering =excelsa in the SPECIES column would include all species named excelsa.</td>
</tr>
<tr>
<td><code>>2000:</code></td>
<td>Entering >2000 would include all entries > 2000 in the selected field.</td>
</tr>
<tr>
<td><code><2000:</code></td>
<td>Entering <2000 would include all entries > 2000 in the selected field.</td>
</tr>
<tr>
<td><code>>=1800:</code></td>
<td>include only records that are greater than or = to 1800 in the selected field.</td>
</tr>
<tr>
<td><code><=100:</code></td>
<td>include only records that are less than or = to 100 in the selected field.</td>
</tr>
<tr>
<td><code><>NULL:</code></td>
<td>Entering <>NULL in a column would exclude all NULL values.</td>
</tr>
</tbody>
</table>

Press **SHIFT+F1** to open help option for F keys and grid filter syntax examples.

Using Conditional Operators in filter-bar searches

The items in a column can be filtered according to more than one value by separating those values with the AND or OR conditional operators. These operators must be in uppercase.

- **AND**
 - include only records that are selected by all the filtering criteria. Thus entering vir AND sub in the species FULLNAME column would include entries such as Juniperus virginiana subsp. scopulorum.

- **OR**
 - include only records that are selected by at least one of the filtering criteria. Thus entering pin OR pod in the FAMILY column would include entries such as Pinaceae and Podocarpaceae.

Column Range Filters

This option, found on the **Query tool** drop-down, can be used on any non-boolean column to filter on a range of values. Perhaps its greatest use is when searching on dates and date ranges (see below in date filter section). However, it can also be used in numeric and character fields. Caution with the ‘Number’ field in Collection Events as this is in fact a character string field.
An example filter on a range of collection years. The range tool auto-adds the grid filter row entry. In this example, if ‘Range includes the entered values’ is not selected, it would search 1891 to 1898.

Date filters

Date filters can be complicated as dates added by BRAHMS also include a time element as shown below:

Using the exact 19/10/2021 in the grid filter row will not work because of this time element. You can type in “>= 19/10/2021 AND < 20/10/2021” – but that’s pretty tiresome. Thus for date filters, the easiest way is to use the Query drop down ‘Column range filter’ option.
The Column Range filter option being used to select a date range. When selecting dates, you can manually type
dates in using the above format, or use the date lookup. If ‘Range includes the selected values’ is not selected,
this will exclude the actual values entered – i.e. > 01/01/2011 rather than >= 01/01/2011 etc.

An example date filter applied using a date filter. The time element is ignored.

You can also directly use the grid filter row using commands with syntax:

< 1995-01-01 AND <> NULL will filter to any non-null dates before 1 January 1995.
= 1992-04-29 will filter to this exact date but only if there is no time element.
< 1994-08-30 AND > 1994-08-15 will filter to records lying between these two values.
<= 2015-08-30 AND >= 2015-08-01 will filter to records lying between and including these two values.

Note that AND is in CAPS.

Queries using Selection and +Selection

You can set filters on current cell values using the Selection and +Selection options.

- Open the main file collection events table using Collections > Collection Events. Set a filter on a cell value
 by clicking on the value and then the Selection toolbar. This option overrides any previous filters.
- You can add multiple cell-based queries using the +Selection option. As soon as you select Selection
 rather than +Selection, the filter will be again restricted to a single value.

Using the Selection toolbar options.

Building and saving more complex queries

Designing queries

- Select the toolbar option to open the main Query Tool.

Using the main Query tool form, you can design and save your own queries. Queries, which generate visible
SQL commands, can mix and match fields of any type. Each command you add is saved unless you remove it
from the list. You can then selectively enable and combine the one-line commands and optionally name and
save combinations of commands.
- Use the various drop downs to add the query command(s) you want, using **Add** to add the command to the command list. The AND/OR settings should be adjusted if necessary.
- Use **Apply filters** to run the query.

An example Query Tool form with previously used commands, three commands enabled. You can name and save a combination of query commands. The Query Tool form can be undocked and dragged off the application.

A further example Query Tool form with previously used commands, three commands enabled.

Saving a query

To save a query, you must provide a name and use the Save option.
Sharing query commands

When you save a query with a given name, you will see the query listed under ‘My Saved Queries’. Here you can Share the query by selecting the Share tick box. Note that you can opt to show/hide queries submitted by other users.

Multi-Value (list) searches

The Multi-Value Search enables you to copy or enter a list of values to locate and tag records in the current table. For example, you may have a list of species names, plant accession IDs, collector numbers, publication years, barcodes or transaction IDs that you wish to locate.

Rather than searching for these one by one, the data items can be manually added to the multi-value search area or pasted in from a list you may have - e.g. a list of values in a Word doc or an Excel column. NB. You can use this for barcodes but bear in mind, there is an additional barcode search option on the Collections menu toolbar.

Help is provided when using this option.
Use Run Search to initiate the search, confirming your search as prompted.

Search results are summarised with the values found and not found. Found values are tagged. If there is more than one value located, all values are tagged. Use the 'Show Tagged records only' option to apply a filter on your results. Prefix values with ## to exclude from the search.

In this example, a list of Plant IDs is copied from an Excel sheet.
Barcode searches

Barcodes can be used to locate records quickly and uniquely. In the main collection event or specimen tables, enable the barcode search toolbar using the Barcode Search option on the Collections menu.

In this example, 6 records have been located using the barcode search option. Barcodes would be normally be scanned into the search field using a barcode reader. However, you can also manually type or paste in barcode values.

As barcodes are scanned, assuming located, they are tagged with ‘B’. The number of B tagged records is indicated. As tags are user-specific, you can scan/tag barcodes without interfering with another users’ tags.

To view the selected record(s), use the filter option provided on the barcode toolbar.

In this example, 5 records have been located. Note that the filter option adds ‘=B’ to the tag grid filter box. If you continue to search for new barcodes with the filter on, the newly located records are added to the filtered list.

Barcode searches have a ‘Found’ and ‘Not-Found’ beeping noises. Note that your PC sound must be enabled to hear these beeps. Separate beeps may be configured on your actual barcode scanner.

Executing an SQL command

In the current version of BRAHMS, the SQL features are under development. These will be extended to create a saved table of SQL commands with restrictions and command guidelines that include field selection. SQL commands will only be available to selected users.

The ability to use SQL commands and functions directly in BRAHMS opens up a further dimension of editing flexibility. It is never essential to manually issue SQL commands as discussed here. However, if you do, it can make certain types of task much easier, for example, when editing all of the records in an RDE file. Using SQL commands can speed up some editing tasks enormously.

For example, imagine in an RDE file with several 100 records, you want to replace all occurrences of the text ‘SN’, ‘sn.’ and ‘No number’ in the NUMBER field to a uniform ‘s.n.’ value. With the correct SQL command, the task can be done in seconds.

Meanwhile to test the concept and see what’s coming:

- Select Taxa > Species to open the main species table.
- On the Data Tools toolbar, open the main Query Tool and select the SQL tab.
Edit the command area to: UPDATE species SET Taxstatus = '!!!' WHERE taxstatus = 'accepted'

(Note the use of single rather than double quote marks)

Select the **Execute SQL** option on the form.

After doing this, select **Refresh Data** on the **Data Tools** toolbar – this will update your view of the data.

To reverse this edit,

- Edit the command area to: UPDATE species SET Taxstatus = 'accepted' WHERE taxstatus = '!!!'

- Again, select the **Execute SQL** option on the form and Refresh the data.

The completed SQL command tool will be available in the next BRAHMS release. We may initially restrict its use to RDE tables.

A more complex example which uses tags follows. This example sets the Boolean field NOTONLINE in the specimens table to True (1) for all tagged records:

```
update specimens set notonline = 1 from specimens as sp inner join (tags inner join brahmsusers as bu on tags.brahmsuserid=bu.brahmsuserid AND bu.username = N'"myname"') on sp.specimenid = tags.recordid
```

In the above example, the username 'myname' must be set to a BRAHMS user log in username. This is because tags are user-specific. The field NOTONLINE can be set to null, 0 (false) or 1 (true). Also be careful when using single quote marks not to use special quotes as generated by Word. Also note that to make the command more readable, the tables can be assigned shorter names. Thus `specimens as sp` and `brahmsusers as bu`. This is not necessary but can make complex commands more readable.

By adjusting the table and field to edit, you can use the same command structure elsewhere. Thus:

```
update collectionevents set collectionyear = 1850 from collectionevents as ce inner join (tags inner join brahmsusers as bu on tags.brahmsuserid=bu.brahmsuserid AND bu.username = N'"myname"') on ce.collectioneventid = tags.recordid
```

Using the SQL screen, the SQL command can be split up on different lines to make more readable.
Find anything – anywhere

When you open any data grid, you can use the Find option to locate any text or a number in any grid cell. Cells that include your text are highlighted in yellow.

- To test, in the open database, select Collections > Collection events. Click anywhere on the data grid to activate the Find option and then select this to open the Search box. Ctrl+F also opens this option.

Using the search box navigation arrows, you can move to the next or previous matching cell. Alternatively, use F3 or Shift+F3 to move forwards and backwards respectively. Press Esc to clear the search and Esc again to close the option.
Calculated fields

Introduction

Many BRAHMS database files include calculated fields (§ fields). These store summaries of information about records in these tables, usually numeric totals or formatted text strings. Calculated fields are mostly not auto-updated. Rather you must periodically use the Recalculation Scripts option provided on the Management menu to recalculate all or a selection of these fields.

Examples of numeric and string calculated fields are:

- # collection events per country in the country table
- # images per species in the species table
- # specimens per collection event in the collection event table
- Species full name in the species table added to # Full name
- Text date formats in RDE for specimens
- Gazetteer summaries in RDE for specimens

Calculated fields are read-only and are displayed using a different column header colour. The field name headers start with # as in ‘# Collections’ and ‘# Full Name’.

You can display # fields individually using the standard column selection options on Grid Tools > Manage Columns. Alternatively, enable all # fields at once using the toggle option Data Tools > # Calc Fields.

Tables can be sorted and filtered using calculated fields and these fields can be included in reports.

Examples of calculated fields

Some example calc fields in the main Families table.
Updating calculated fields

Running from BRAHMS

Calculated fields can be updated individually or for the entire database using the options provided under Management > Recalculation Scripts. Here, you can see all the calculated field options for the entire database including when the fields were last updated.

An example of calculated fields in the main country table

Updating calculated fields

Running from BRAHMS

Calculated fields can be updated individually or for the entire database using the options provided under Management > Recalculation Scripts. Here, you can see all the calculated field options for the entire database including when the fields were last updated.

An example data grid showing a few of the recalculation fields

You can apply filters on this data grid to see only those fields in one or a selection of tables.

Recalculation fields for the main species table

Updating using a Scheduled Windows Task

You can set up a scheduled Windows task to update all BRAHMS calculated fields by executing the command line:

`brahms.exe -recalc`

You could set this up as an automated scheduled task using the Task Scheduler, thus ensuring your calculated fields are up to date.

Note. This will only work on those connections that have been shared to the application’s ‘Shared’ folder where you are running brahms.exe from. Shared connections will exist in the shared folder as .dat files. For help on sharing connections, refer to the section on Data Connections > Sharing data connections.
When you run brahms.exe – recalc, there is no immediate feedback. However you can see the calculations being auto-updated if you open Management > Recalculation Scripts and watch the ‘Last Run On’ field or see it running in your task manager.

Adding calculated fields to reports

This separate topic is discussed in the reports section of this guide.
Adding and editing data

RDE vs Database

You can add new data records directly to your database or, alternatively, add new records to Rapid Data Entry (RDE) files and then transfer these data to your database. If you are adding just a few records, it’s usually easier to add directly to the database. For bulk additions, use RDE.

Edit mode

Data can be added and edited in RDE and in your main database tables. By default, tables are opened in read-only mode. To enable Edit mode, select the Edit option on the Data Tools toolbar or enter Ctrl+E.

The behaviour of the data grids changes slightly in Edit mode. For example, you will find that TAB and Shift TAB are needed to move through the fields rather than the left and right arrows.

Data are auto-saved whenever you exist a field or change a row. If you do not see the change in your grid, use the Refresh Data option on the Data Tools toolbar.

Details on how to use lookup functions are provided in a subsequent section.

About saving data

When editing data directly in data grids you must be in Edit mode. A pencil icon appears in the data grid left margin. Data are saved as follows:

a) Pressing Enter to move to next field (NB TAB moves to next field but does not save).

b) Moving to a new record.

c) Going out of Edit mode.

d) Closing the table will force save any unsaved edits.

Note. TAB does not save data as this key is using frequently to move to next field. Each save saves the entire record has an associated ‘cost’. Thus, as a rule, it is inefficient to save for each field change.

Adding records

New records are added using the Add option on the Data Tools toolbar. You can add a single blank record – or add new records in batches as offered on the Add drop-down. Each new record is assigned a GUID primary key (not visible unless selected). Adding batch records is especially handy in RDE – and can be faster.

New records can be added one by one or on batches.

Editing larger text fields

Larger text fields (known as memo fields in v7) can be edited in the data grid itself or, by clicking on the field edit icon, in a separate text editor window.

Longer text fields can be edited in the data grid or in a separate text editor window.
Large blocks of text can be added and edited using the Text Editor. You can paste or drag and drop text to the Editor with no limit on text length or character set. Aside from the click-icon, you can use Ctrl+M or Ctrl+T to open the text editor.

You can also increase row height to edit large text fields in the data grid without opening a separate text editor.

What cannot be edited?

Some fields in data grid and forms cannot be edited. Mostly, these will be fields that are visible but belong to another table. In some cases, these fields will have specific lookup functions, an example is the species #Full Name field in collection and accession files. But in other cases, data from related tables must be edited in the relevant file. Examples are the species table fields Habit and Growth form which can be viewed but never edited in the living collection accession file.

Audit fields

When new records are added the audit fields Created By and Created On are filled. When a record is edited in any field the fields Last Modified By and Last Modified On are updated. These fields cannot be edited but can be used to apply filters and sorts.

The Audit fields are auto-updated as you add and edit data.
An example filter on the Created On field. When filtering on dates, use a valid date format. You can use functions as here: > 01/01/2009 AND <= 10/01/2009.

Viewing add/edit dates and name of person adding/editing in the main species file. You can sort on any of these columns and also use the Summary tool as shown here for the created-on date field.

Data forms

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#speciesformvideo

Forms are provided for most of the main grids. As well as being used for data editing, they also provide options to list related records and calculated fields. The data on forms update as you navigate to different grid records. Forms can be docked (default) as you like and re-sized. All form text is translatable.

In order to edit data on forms, you need to be in Edit mode. If you are not, data will not be saved and lookup options are not enabled.

The form icon indicates if you are in Edit mode or not.

Most forms have the option to edit data and then Save or Cancel the edits made. Once any edits have been made, the form is given a red surround.

As an example, select Taxa > Species and then select the Form option on the Data Tools toolbar. This opens the species table form, by default docked right.
Data can be viewed and edited using grids or forms. Forms can be resized, docked or dragged to separate monitors.

Summary of collections on the main species form.

Find and Replace

The Find and Replace tool on the Edit dropdown works in text columns that are not read-only.

The Find and Replace tool.
Find replace actions can be restricted to tagged records. They also respect your current filter settings. Thus if you have a filter on a family name, only records in that family would be edited. Find replace edits are recorded in the Edit History table.

An example in an RDE file adding in a country name to all records.

Find and Replace options:

- The 'With' term will be substituted for the 'Replace' term exactly as entered.
- Optionally restrict edits to tagged records.
- To replace null or empty values leave 'Replace' blank. To replace with a null value, leave 'With' blank.
- The 'Replace' term can contain ‘%’ wild cards:
 - ‘%term%’ is equivalent to 'contains term';
 - ‘term%’ is equivalent to 'starts with term';
 - ‘%term’ is equivalent to 'ends with term'.
- To match only whole words, include spaces - for example ‘% term %’ would locate 'term' only when prefixed and suffixed by a space.
- To use a ‘%’ character in the 'Replace' term you can double it. Thus, to find the text ‘100%’ you should use ‘100%%’ as the 'Replace' term (or ‘100%%%’ for 'contains 100%

Deleting records

Marking records for deletion

Records are first marked for deletion using the Delete option on the Data Tools toolbar or the default F7 key. This adds * to the DEL field and displays the record in a strikeout font. Repeating the action for a record marked for deletion will un-delete it. You can manually add * to the DEL field or, with appropriate permissions, use an SQL function. For example: UPDATE species SET DEL = '*' WHERE taxstatus = 'uncertain'. This would mark the records for deletion. You could reverse this using the command UPDATE species SET DEL = '' WHERE taxstatus = 'uncertain'. Or simply use the toolbar option Delete > Clear Del tags. Records only marked for deletion are fully recoverable.

Removing records marked for deletion

To remove records marked for deletion, a second step is required. Deletion cascades to delete linked child records. Thus, if you delete a species that has linked collections, specimens, text and common names, these too would be deleted. The system advises you of the consequences of a deletion.
The species table with several records marked for deletion. To finally remove these records, select **Delete > Remove records marked for deletion**. This leads to a message box that lists the consequences of deletion. As a rule, deletion of a record leads to the deletion of all its child records.

In the above examples, the deletion of the species or the families would also delete the records listed in the message boxes. The deletion of three accepted family names in the demo conifer database would lead to the deletion of all the records as reported.

To test deletion in the conifer demo database, select **Geo > Gazetteer**. Optionally, you may could set a field view to include the # Collections and # Species together with the locality name.

- Locate the gazetteer ‘Bat Dai Son’ in Vietnam - mark for deletion. Then select **Delete > Remove records marked for deletion**.

Deleting this gazetteer record would result in the deletion of several collection events and their specimens and dets.
Merging data

Merging values

To merge different data values that represent the same thing, use the merge option provided on the Column Summary tool. This option does not merge records, rather it simply ensures that the different values you select are edited to the selected value. You could do this manually, record by record – but the column summary tool provides a convenient way to see and tidy such errors.

This option does not work on read-only fields. This includes those fields that are visible in a table but are in fact, related from another table. Thus, if you see multiple spellings of a collecting place name in the collection event table, make the necessary edits in the gazetteer table.

In the above gazetteer table example, there are two spellings of Alpes Maritimes as Major Admin names. The two values have been tagged - and to double check the records, a filter has been applied to the data grid records using the option provided on the Column Summary form.

The Merge to Selected option, in this case will make both spellings the same (Alpes Maritimes). Records themselves are not merged. The option can be used to merge many values at the same time. The currently selected record is deemed to be correct value.

Merge values or merge records

Merging values is useful in data fields where the data you are merging have no child records. Examples are multiple spellings of Habit or Red List codes in the species file and multiple spellings of a major area name in the main gazetteer table. However, whenever a record had the potential to have child records, the records themselves should be merged. As examples, this would apply to multiple entries for higher classification, family, genus, species, collector, country, gazetteer, garden areas, and institute names. The sample principle applies to merging collection events, plant accessions, plant plants and seed records. In each case, any child records, after a merge, would belong to a new parent record.

Merging records

Merging records is where 2 or more records are joined into one together with any children records. A typical example would be where there are two identical genera in the genus file, perhaps linked to different families. Merging these records means that all taxa connected to the incorrect genus or genera will be moved to the one you select. Another example would be merging place names (joining all collection events); merging species (potentially joining many types of records).
The genus Acacia, added 3 times under three families are merged to a single entry under the selected family.

Match/Transfer data – Excel to BRAHMS

Matching data introduced

The **Match/Transfer** option on the **Data Tools** toolbar can be used to match data between the currently opened table and a selected Excel .xlsx file. You can use this option to:

- a) tag records in BRAHMS that match those in the XLSX file.
- b) transfer selected columns from the .xlsx file into BRAHMS based on your match criteria.

Please note: this option **CANNOT** be used to add new records to any table, only to update existing records. To add new records, check the Rapid Data Entry (RDE) functions and/or add data manually.

Also, see below section on matching across tables - if you are matching data using a match field from another table (e.g. using specimen barcode to update collection events)

The Match/Transfer option has multiple applications to match and import data.

NB: you can also use the BRAHMS **Multi-Search tool** to simply tag matching records.

If you have an Excel .xlsx file and you want to know which records in this file also occur in the opened BRAHMS table, you can use the matching tool. Matching allows you to choose the fields to match on. In some cases, there may be an obvious field to match on – for example a barcode (given that barcodes should be unique in your database). There may be other cases where you have a unique matching code, for example PlantID or a species code inherited from another database and stored in BRAHMS. Also see the section on GUID matching below. However, in other cases, your Excel file may have a series of fields to use to match on, for example Family + Genus + Species + Subspecies + Variety + Cultivar. Another example may be Collector name + field number + collection day/month/year + Country. The challenge is to choose the most appropriate match criteria.

Bear in mind that you may or may not be looking for a 1:1 match – this depends on your objectives and in particular, if you are planning to match and then transfer data.
A worked example of matching – specimen table

The following example illustrates how you can match data from an Excel .xlsx worksheet and the opened BRAHMS table. You can substitute this example with data from any .xlsx file you may have – in any BRAHMS table.

- In the conifer database, select Collections and under the Category Preserved specimens, select Specimens.
- As there may already be tagged records in your data file, it may be worth using Tag > Count tagged to quickly check.
- Tag some records with barcodes and then save these tagged records to Excel. Note that the data saved to Excel will be those columns that you had in your current view. In this example, you may simply choose to export the barcode field to Excel.
- Select Tag > Clear current Grid Tags.
- Select Match/Transfer on the Data Tools toolbar and locate your Excel file as prompted. In this example, you can match the records using the barcode as shown below.

Here, the example is only matching on the barcode. Note that the actual field name in SpecimenBarcode. You can use the Remove All option to unlink all the possible match fields and then manually choose. Note however that you could choose to match on all fields which in this case (as the data were exported directly from BRAHMS), would give the same result.

After selecting Match Excel to your data, the match success is reported. The number of matches is also reported. The matched records in your database table will now be tagged if this option is selected.
A worked example of matching – species table

If you do not have an obvious, single match field such as barcode, you can choose those fields that you consider will give the best match. In the below sample, records in the main species table are matched using multiple fields Genus, Species, Species Author, Subspecies and Subspecies Author, Variety, and Variety Author.

- In the conifer database, select Taxa > Species.
- As there may already be tagged records in your data file, it may be worth using Tag > Count tagged to quickly check.
- Tag a select of records and then save these tagged records to Excel. Note that the data saved to Excel will be those columns that you have in your current view.
- Select Tag > Clear current Grid Tags.
- Now select the Match/Transfer option on the Data Tools toolbar and locate your Excel XLSX file as prompted. In this example, you can match the records using the taxa fields as shown below.
- To further illustrate the matching process, open your saved Excel file and edit the data to make one of more records obviously not match.

To illustrate the importance of appropriate matching, the same Excel file used above is here matched on collection year. Because the specimen table in BRAHMS has many collections from e.g. 1974, all have been matched. It may be that you want to tag all records from these years – in which case, this would be the correct choice. But not if you plan to transfer data (see below).

One record has been edited to force a non-match between this Excel file and the database.
In this example, of the available fields in the Excel data file, only some are selected. In fact, as these data were exported from BRAHMS for this exercise, all the fields could be selected – or only #Full Name and the result would be the same. The matched records will now be tagged in your database.

GUID matching

If you are exporting data from your own BRAHMS database with a view to editing these data and transferring these edits back to BRAHMS, one useful trick is to include the Record GUID when saving to Excel. This field is unique and thus guarantees a 100% unique record match.

Including the Record GUID means you can easily match records on this single field. This can only be used if the data are being matched with the same database.

Matching across tables

You may need to update data in a table where your Excel file only has a matching field from a related table. A good example of this is updating fields in your Collections Events table based on specimen barcodes. The specimen barcode is not in the Collection Event table itself and thus cannot be used directly for matching. The approach here is as follows (this example applies to the collection event/specimen tables):

a) Open the specimen table and ensure both the Collection Event GUID and Barcode fields are visible.

b) Export these two columns to Excel for tagged records.

c) The next step is to add the Collection Event GUID to the excel table with the data you wish to transfer to Collection Events. As this table has the barcode, you can use the Excel VLOOKUP() function or another Excel merge method as suits) to add the Collection Event GUID to your data transfer Excel table. VLOOKUP is not further discussed here but there is plenty of help available online.

d) Once this step is completed, you can match import the data to collection events using the Collection Event GUID to match.
Transferring data

In matching records, you may only be interested to know which records match and to tag these matches. However, you may also want to import data from the external Excel file into the current BRAHMS table. This is achieved by ticking the Transfer option for those fields you wish to transfer. Note:

- Any field selected for transfer is not used for matching.
- The Overwrite option, if selected, will force overwrite existing values. If not selected, only blank/null fields are updated.

In the above example, the excel file is matched on a selection of taxa fields. Three fields have been selected for transfer, forcing an overwrite. Also note that the Excel file includes some differently named fields (e.g. “Habit (from John”)”). These have been appropriate mapped to the correct field in BRAHMS.

The data provided in the Excel file have now been added to BRAHMS.
Excel to BRAHMS field matching

When importing data from Excel, for example into an RDE file or when using the Match/Import tool, BRAHMS has to know how to map or match your Excel columns to the correct fields in BRAHMS. For example, you may have a field in Excel with the column heading ‘Decimal Latitude’ that you want to go to the standard BRAHMS field ‘Latitude’. Or you may have a field in a different language such as the Portuguese ‘Pais’ or the Chinese ‘国家’ that you want to map to the BRAHMS column ‘Country’.

You could edit your Excel fields to have standard BRAHMS field headings. But this is not very useful as:

- you would need to do this for each Excel file and
- you would have to know the correct BRAHMS field names in each case.

The good news is that field matching is managed by the Excel to BRAHMS template file ExcelColumnMatchTemplate.csv which can be found in your BRAHMS folder. This is a basic file with two columns, one for the Excel column heading, the other for the BRAHMS column heading.

An example matching template ExcelColumnMatchTemplate.csv showing a selection of match fields.

You can edit this file directly, adding or removing entries. However, BRAHMS automatically updates the template when you use matching. Allowing BRAHMS to update the template guarantees that the BRAHMS field names are correctly assigned. Note:

- Multiple variations for the same field may be given, all pointing to the correct BRAHMS field.
- If you open this file directly in Excel, you may find that some Excel fields with accents are displayed incorrectly. However, if you open the file using Notepad, they will be displayed correctly.

Managing edit conflicts

An edit conflict occurs when one user displays data in order to edit it, and then another user updates the same data before the first user’s changes are written to the database. In this case, there is a danger that whoever updates the database last overwrites the other user’s changes. Although in practice these conflicts are quite rare, in systems with many same-time users working on the same type of data, they can occur.

While it is not possible to prevent users trying to edit the same record, BRAHMS will prevent these conflicts by not saving data that has changed since it was retrieved. Typical example:
• User A opens the species table including a record on *Passer domesticus*. User B also accesses the same record. Thus, both users have the same record in their respective data grids at the same time.
• User A saves a change to the record. The edit is now in the main database but is not displayed in user B’s data grid (unless by chance, user B decided to use the *Refresh* option).
• User B edits the same record on *Passer domesticus* and saves it. However, the last modified date/time in the database is now later than that which user B started with which enables the system to issue a warning and prevent user B overwriting the edit made by user A.

In the event of an edit conflict, the system issues a warning as above.

Data verification

Introduction

Data verification allows users with access to this function to mark records with a verification status. This function can be used for all records in any table. Records can have multiple verification status entries. It is possible to review the status of records, optionally restricted by status code and/or the user who provided the status.

Providing permission to edit status codes

Users must be given permission to edit status codes by the database administrator(s). This setting is found on the main Permissions form opened by selecting *System > Manage Users and Permissions* and ensure the settings are applied appropriately for the selected user.

![Setting permissions for record verification on the permissions form](image)

Editing verification status codes

Verification record status options will normally be added to the BRAHMS Lookup List table. This means that users will have to select one of these values from the record verification form dropdown. If entries are not made here, users will be able to freely add their own status codes.

You can add as many status options as you like. To add or edit these, select *Management > Lookup lists*. Entries must be added here with the Field Name set to RecordStatus (case sensitive).
Adding some Record Status values to the lookup list.

Adding and deleting verification records

In any open table, open the verification tool using the Record Checks option on the Data Tools toolbar. The Verified By name (current user) cannot be edited. Select a Record Status and optionally add a comment – using Add Verification to add the record. Use Delete Verification to remove a verification entry.

A given record may have multiple verification records. Records are sorted with the most recent at the top of the list.

Reviewing verifications

The verification history for individual records can be seen by opening the Verification History tool window and moving through the data grid. However, to review all records with a verification entry, you can use the following procedure to tag records:

Open the Verification History tool and at the bottom of the form, select a ‘Tag records having’ setting. This may be records with ‘Any Status’ entry or it may be restricted to a selected Status code. You can choose the tag character to use, optionally clearing all existing tags beforehand.

An example where all records with a Map Error status code will be tagged with ‘!’
Records with map errors have been tagged with ! It is also possible to tag records that have different status codes using different tag symbols and thus record highlight colours.

Track and reverse changes

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#edithistory

Introduction

All database changes, including those made in RDE files, are tracked in an edit history table. This feature tracks all record editing; who made the changes and when, together with the original and edited values. All changes, including those in long text strings, can be reversed using the Undo option.

By selecting the Edit History option, all edits for a record can be seen together.

Field level changes and undo

The Edit History Form Field level tab lists the edits made to the current field. Here, you can use the Undo option to reverse edits – opting to go back as many stages as you have recorded.

Example Edit History screen showing the Field History tab. The Undo option is on the far right.

Accessing the main edit history table

All record additions, last edit dates and edits are centrally recorded in the Edit History table. To open the central edit history table, Select Management > Edit History.
An example screen with a column summary on the Record Type column. There are two categories of Action: Create and Update. In this screen shot, a grid filter has been set to show updates only.
Custom fields

Introduction

BRAHMS databases and the tables they contain are provided with a defined structure. However, as well as choosing the data columns you see in your data grids, you can add new data fields specific to your project, selecting the field name, type and size. These custom fields become a permanent part of your database unless you subsequently opt to delete them. This also applies to RDE files.

Custom fields and database migrations

Often, when databases are migrated into BRAHMS from other formats, the migration leads to a number of custom fields. These fields may subsequently be deleted if you find the data are not needed – or alternatively, they may be moved to a standard BRAHMS storage field if one is available.

Adding custom fields

As an example, open the main species table or another table you may prefer. Select Grid Tools > Manage Columns. On this form, you have the option to add Custom Columns, choosing the field name, type and size.

If the field is of type Text and you set Max. Chars to NULL or 0, this creates a text field with no maximum length (equivalent to a v7 memo field). You can set the default position of these fields using the Up Down Top Bottom options.

![Column Management](image)

Adding a new field for text storage, max size set to 25 characters.

When adding new fields, you can assign the field to a group – as discussed below.

Editing custom fields and assigning groups

Custom fields can be edited and/or deleted from the Column Manager Editor tab. Here, all custom fields for the current table are listed. You can edit the field names by double-clicking on the field name then editing it. You can also assign a field to a named group. The sort order of custom field groups and the fields within them can be adjusted. When viewing or editing data using a form, your custom fields will be presented within your assigned groups.
Using the Editor tab options, you can list and remove custom fields for the current table.

An example of custom field grouping in species table

An example of custom field grouping in the literature table

Custom field names
You can assign any name to your custom field headers – for example they may include spaces and be cased as in ‘My New Field’. However, in BRAHMS itself, these fields are given a different table storage name such as Str01, Str02, Int01, Bool01, Date01. The actual names are displayed when using the custom field editor.

Custom field properties
Each custom field, as listed under Management > Custom Fields, has properties.
Custom field properties

For example, for a datetime field, you can hide the time component.

Custom field data in grids and forms

Data in custom fields can be edited in the same way as all other fields. You can also add lookup lists.

Custom fields appear in your main data grids, assuming they are selected for inclusion in your data grid view. They have a different font to standard fields.

Custom fields can also be edited on forms. When using forms, your custom fields are organised into field groups.

Viewing custom fields for all tables

All custom fields from all tables are registered in a central table opened using Management > Custom fields.
RDE files and custom fields

In the case of RDE files, when you run the importer, the system checks for custom fields. If there are custom fields added to the RDE file and these are not already registered in BRAHMS, you are offered the chance to register from the RDE import wizard. If you do not register the field(s), the data in those fields will not be imported.
Exporting data from BRAHMS

Introduction
Data can be exported from BRAHMS in a variety of ways as summarised here. Using one or more of these methods, you can export all data from BRAHMS into one or more formats.

Export to Excel or CSV
You can export tagged records from any table to Excel or CSV using the options provided on the main Data Tools toolbar. Exporting works with tagged records and will export the currently selected columns in the current sort order. You can view all exported files using the View option.

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#exporting

This example exports selected columns from a specimens table filtered on holotypes. Excel files can be opened directly after export.

Export an entire database to XML
The Export option on the Database Manager form is used to export all data from a selected database. This option does the reverse of the XML Import tool. It creates a folder of XML text files in a designated folder.

This option exports all data from all tables in your database including all custom fields and setup options.

Using the export tool, you can export data from one database in any store type and then transfer the database to a new database in any other data store. For example, you could transfer your database from SQLite -> PostgreSQL or from PostgreSQL -> MS SQL Server.
An example folder created by the Export to XML function. Large tables are split up in a numbered series, for example specimens_000.xml, specimens_001.xml, specimens_002.xml, ... each file a fixed number of records.

Darwin Core Archive exports

You can create Darwin Core Archive (DwC) files currently from the main specimen and taxa tables. These files adhere to published DwC standards. With specimens, the occurrence.csv is provided with eml.xml and meta.xml files in a single DwC Archive zip. Further extensions are being added to the DwC option to cater for variations in export requirements. This will include the ability to add further standard and custom fields and provide the output heading required. These files can be submitted to Symbiota, GBIF and similar data networks.

DwC output options are available for taxa and specimens.

Example DwC output as created from BRAHMS.

Exporting using reports

You can design reports to export data to different formats, for example to word, PDF, Excel and others including of course printers. Reports are used to export data from specific tables as managed by BRAHMS. However advanced users can also access and control the reporter directly, setting up data connections to any set of related tables.
Aside from printing, reports can be exported in the above listed formats.

Exporting to GIS
As discussed in the mapping sections of this guide, you can export data to your preferred GIS such as ArcMAP or QGIS. The data passed to the GIS are those data that you have selected in your data grid view.

Accessing your data store directly
IT staff can access any BRAHMS data store directly. Data are strongly documented with meaningful table and column names. You can access and query your data without restriction. You may wish to write software applications against the database.
Lookup fields and values

Introduction

Why use lookups?

Rather than typing in data values, wherever possible, an existing value can be selected from a dictionary or list already in your database. Why type in a species name when it’s been entered before? As well as speeding up data entry – this also reduces typing errors and enforces data standards.

In the ideal world, you would have as much clean and useful data as possible added to your database from the start. One of the challenges when creating a new database or optimising an existing one is locating and importing useful data – or tidying up your existing data and thus increasing its value.

In practice, your data dictionaries tend to grow over time, gradually becoming more valuable. In some cases, relevant data such as lists of taxa and places or the more obvious standard lists such as IUCN Red List status codes or Habit categories can be imported from other sources, perhaps as exchanges with other BRAHMS projects. But in others, you can gradually develop lists and refine these as you go.

In summary, having well-organised tables of lookup fields and data values is an invaluable asset for healthy database development.

Two categories of lookup in BRAHMS

Two main categories of lookup are used in BRAHMS:

a) All of the large tables have their own specialized lookup option, for example, for taxa, geographic and collector names. These lookups are discussed in the relevant manual sections such as that for finding taxa names.

b) Lookups that use data stored in your central lookup fields table. This single table holds lookup values for any data field that you have opted to register in your lookup dictionary. Examples are habit, language, colours, specimen categories, map accuracy codings, biome types, etc.

This section focuses on the use of the central lookup fields table.

The central lookup field list

Introduction

The central lookup list is used throughout the database and across all tables. Any field registered in the lookup list will be available in your system with the lookup values you add.

The lookup list consists of two related tables, one storing the list of registered fields with relevant settings for these fields. The other table holds the actual lookup values for each registered field.

To open and edit the central lookup field list, select Management > Lookup Fields.

The lookup Fields table stores a list of all registered lookup fields and provides a mechanism to edit their properties and the lookup values. The Lookup table does not store values for taxa, places, collectors and the other main tables as these already have their own special lookup functions.
Description of the Lookup Fields table structure

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Standard BRAHMS tag field.</td>
</tr>
<tr>
<td>Del</td>
<td>Standard BRAHMS deletion field.</td>
</tr>
<tr>
<td>#Field values</td>
<td>Calculated field: number of lookup values for a field.</td>
</tr>
<tr>
<td>Field Name</td>
<td>The name of the field.</td>
</tr>
<tr>
<td>Must Choose</td>
<td>User must choose one of the lookup values – no free text entry. If this option is not selected, the user can choose a value but also add a new value.</td>
</tr>
<tr>
<td>Must Choose in RDE</td>
<td>As above but applies only to the field when in an RDE file.</td>
</tr>
<tr>
<td>Use Append mode</td>
<td>Multiple lookup values can be selected.</td>
</tr>
<tr>
<td>Append separator</td>
<td>Separator between multi-values, e.g. a comma or semi-colon.</td>
</tr>
<tr>
<td>Not Nullable</td>
<td>Null values are not permitted – thus the use must select a non-null value. If this is not selected, the user can set a field to null.</td>
</tr>
<tr>
<td>Default value</td>
<td>If Null values are not permitted, a default value should be added.</td>
</tr>
<tr>
<td>Field Comments</td>
<td>General notes about a field.</td>
</tr>
<tr>
<td>Audit fields</td>
<td>Added when and by whom, last modified when and by whom.</td>
</tr>
</tbody>
</table>

The above listed field settings allow you to refine and control how users will use the lookup fields. Note that these settings can be controlled to allow different rules for the same field in the main tables and in RDE.

Which fields to register as lookup fields?

The decision on which fields to add to your lookup list is a project level or personal one. There are no hard and fast rules. However, fields that have a large number of value options, for example more than 1000 are unlikely to be good candidates. Also, although you can add a ‘notes’ field (e.g. Habitat Text) as a look up, as notes will almost always be different, you may not find this useful. However, if you have a common occurrence of some note values, you could selectively add these to the lookup list and then ensure that these can be edited in the table. However, bear in mind that presently, the max length of a lookup list value entry is 128 characters.

Registering a lookup field

To add a new field to your lookup list, select Management > Lookup Fields and the use the Add option on the Data Tools toolbar.
Selecting a column to add to your lookup list.

- Select the **Type** first. This tells BRAHMS which table you are listing fields from.
- Fields already registered are not listed in Add field **Column** dropdown.
- The same field may be used in multiple tables but it will only be registered once in the lookup list. Thus, the settings and values added for a given field will apply in all tables where that field exists.
- Only character fields are listed. Excluded are date, Boolean and numeric fields. Calculated fields are not available. It also excludes fields like Tag, Del and Audit fields.
- As a rule, A) do not add lookup lists for fields that have their own specialised lookups. For example, do not add a lookup for the fields ‘Species’ or ‘Species Author’ in the species table. B) avoid adding lookups for fields that have a very large number of values as these tend to slow up activities in that table.

When you select a new field value, the existing data values for the new field are listed on the form together a count of the occurrences of the values. You can use these existing values to help develop your lookup list - selecting some (**Add ->**) or all (**Add All**) of the current values to your lookup list.

In the above example, the LLORIGIN field is not yet registered in the lookup list. This data column already has many values in the Collection Event table. These are listed here with a count of the number of occurrences per value. At this point, you could choose to some or all of these values to develop the lookup list for this field. You can also add new values by typing them in. Bear in mind that the existing values may include entries that you do not want to include in your clean lookup list. Rogue values (e.g. spelling variations) ideally ought to be edited in the data table at some stage.
The order of lookup values as presented when you are selecting a value is controlled by the Sort Order field. You can adjust this order on the values form using the Move Up and Move Down options.

Default lookup value and sort order

When defining a lookup field and its values, you can select a default value and you can also choose the sort order for your values.

Editing lookup field values

Use the Show Field Lookup Values option to list values currently registered for a field.

To edit values, ensure you are in Edit mode and then select the Edit Values option.

When editing values, you can add new or remove values and alter their sort order.

Listing all lookup values

To list all lookup field values across all fields, select the Lookup Values option on the Lookup Fields drop-down.
You can save these data to Excel or print using a custom report.

Adding lookups for custom fields

Lookups can be added for custom fields in the same way as for any other field. Where possible, custom fields, as well as being available in data grids, are added to a special tab on forms.

Field value table

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Standard BRAHMS tag field</td>
</tr>
<tr>
<td>Del</td>
<td>Standard BRAHMS deletion field</td>
</tr>
<tr>
<td>Parent value</td>
<td>Some lookup values exist in a hierarchy of values e.g. plant events</td>
</tr>
<tr>
<td>Sort order</td>
<td>The list order for the lookup values</td>
</tr>
<tr>
<td>Value</td>
<td>The lookup value itself</td>
</tr>
<tr>
<td>Value description</td>
<td>A description of the value</td>
</tr>
<tr>
<td># Values</td>
<td>Calculated field: number of values for the current field</td>
</tr>
<tr>
<td>Field Comments</td>
<td>Other comments</td>
</tr>
<tr>
<td>Audit fields</td>
<td>Added when and by whom, last modified when and by whom</td>
</tr>
</tbody>
</table>

Deleting a lookup field

Entries can be deleted from the lookup list in the normal way – mark for deletion and then remove. When you delete a record, all associated lookup values are deleted.

Editing lookups directly from the database tables

Rather than editing the lookup fields and values from the Management menu, a convenient way to register and edit these values is when you are working in a data table. Here, you can use the Edit option dropdown Edit Lookup Values on the Data Tools toolbar. A non-Admin user needs permission to do this.
Use Edit Lookup Values on the Edit dropdown to create or edit lookup lists when you are editing a data grid.

This opens the same edit options described above.

Importing lookup values from Excel

Look up values can be imported from Excel tables. Some tables are provided by the BRAHMS project for a range of data categories. But you can also develop your own lookup lists. For example, you may have lists of values for biomes, soil types, insect wing colours or flowering stages. Rather than adding these manually to your lookup list table, you can import them from existing Excel tables.

For Excel imports, use **Management > Import from Excel**. The format for the xlsx file is as follows:

Your xlsx table must include the columns FieldName and LookupValue. The fields SortOrder and ValueDescription are optional.

The field names themselves must be the same as the physical table fields and these are often different to the 'friendly' names used in the data grids and field lists options. A good way to get the correct name is to manually add a lookup value and check the Field Name value added to the lookup grid.

When importing, ensure that minimally, you have the Field Name, Abbreviation and Value fields matched as shown above. The right screen shows the data in the Excel table ready to import.
Using lookups

Activating a lookup

Firstly, you need to be in Edit mode. Once in Edit mode, you can activate a lookup using the **F9** or **Ctrl+L** keys or by using the **Lookup** option on the **Data Tools** toolbar.

In edit mode, fields that have lookup functions are indicated with the lookup icon as shown here for the genus and author fields.

Fields that have values in your lookup table (see below) have a drop down or lookup button added to the field.

If you are using a form, the lookup is activated by clicking on the relevant lookup button next to the field or by using a dropdown. Whether you have a dropdown or button depends on the field in question and also on the lookup field settings. For example, taxa and author names always have a button as these consult special lookup functions. Fields which are set to ‘append mode’ lookup (see below) will have a button allowing multi-value selections.

Single value selections and dropdowns

As soon as you add any entries for given field to your lookup list — and you are in **edit mode**, the data field in the data grid and on the form displays as a dropdown rather than a free entry text box. Depending on the settings in your field list table, users will be forced to choose one or more values or also be able to type in new values.

In the left side example, no entries have been registered in the lookup list for Provenance Type. Hence the field can be freely edited. The right-side example shows the field after one or more entries have been registered and the user is forced to select one of the dropdown options.

Multi-value selections

If an appropriate field is set to Append mode, this means that you can select multiple values to add to the field. These will be separated by the designated separation character.
In Append mode, the lookup button assembles the existing values to a list box where they can be selected.

Multi-value lookups can also be used in the data grids.

Transferring lookups from one database to another

1. Open the database with the good lookup settings.
2. Select Management > Lookup Fields > Lookup Values (drop-down option). Tag all records and export tagged to a suitably named Excel file using the Export Tagged option.
3. Select Management > Lookup Fields. Tag all records and export all records to Excel.
4. Log in to the new db. Select Management > Lookup Fields > Management menu again > Import from Excel.
5. Step through the import wizard - all the field setting in the Wizard should be correctly matched. Complete the import.
6. Again, select Management > Lookup Fields.
7. This time, select the Match/Import tool on the Data Tools menu.
8. Locate the Lookup Field file exported above in step 3. The match settings should be as in the screen below, matching on fieldname, transfer and overwrite all others.

Using the Match/Import tool
Rapid Data Entry

A sample RDE file for herbarium specimens is provided here [RDE_Bolivia_JRIWood.zip](#).

Note: if you have problems seeing RDE files in your manager, refer to the RDE troubleshooting section.

Introduction

While data can be entered directly into BRAHMS, RDE is recommended for entering larger numbers of records and also as a first step when importing or transferring data from other software packages such as Excel. RDE files are entirely separate mini-databases linked to your main BRAHMS database.

As well as storing data, RDE files can store images and have the same functionality as your main database files to track and undo changes.

RDE is perhaps the most widely used BRAHMS component and databases are often built through the importing of different RDE files.

RDE data are stored in portable SQLite databases. Although RDE files appear and are used as one single table, behind the scenes, they in fact comprise several related tables which allow you to link images to the RDE records and also keep track of all edits. RDE file have a `.rde` file extension.

You can store data in one or more RDE files and use these data to create summaries, maps, reports, manage images, and in general, use many of the BRAHMS tools and functions. Some users continue to work in RDE as it does all they need. However, RDE files are more like Excel spreadsheets with BRAHMS features. A series of separate RDE files does not constitute a database. Data held in separate RDE files cannot be combined for reporting or mapping - unless the RDE files are merged into a single large file – a process which is possible but inefficient for long term data management. Most projects gather or add data to RDE files – and then transfer these files into their database.

Portable and flexible

RDE files are completely portable. They can be copied to any PC and/or exchanged with other users. You can store them on memory sticks and open the file(s) from there from any BRAHMS database.
An example of RDE files stored on a USB drive.

RDE files are also flexible in that you can add new custom fields and choose default field views – exactly as you can in the main database tables.

RDE file categories

RDE files are available for different categories of data. Currently these include:

<table>
<thead>
<tr>
<th>RDE file category</th>
<th>Used for entering or transferring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazetteer</td>
<td>Geographic data only – names of places.</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>Taxonomic data only – names of all taxonomic ranks.</td>
</tr>
<tr>
<td>Common names</td>
<td>Common names with all their meta data, linking to taxa and optionally to collection events.</td>
</tr>
<tr>
<td>Taxa descriptions</td>
<td>Descriptive texts of any category to link to taxa.</td>
</tr>
<tr>
<td>Specimens</td>
<td>Collection events and optionally their specimens including taxonomy, geographic data.</td>
</tr>
<tr>
<td>Specimen determinations</td>
<td>Determinations (annotations) for specimens that are located using barcode or accession number.</td>
</tr>
<tr>
<td>Observations</td>
<td>Observations – collection events only. Note that observations can be added to specimen files leaving the physical specimen related fields blank.</td>
</tr>
<tr>
<td>Living Collections</td>
<td>Botanic garden accessions, their wild origin if known plus extra fields for plant records derived from the accessions.</td>
</tr>
<tr>
<td>Seed Accessions</td>
<td>Seed accession data including wild origin if known.</td>
</tr>
<tr>
<td>Plant Events</td>
<td>Botanic garden plant events – things that happen to plants over time, observations, inventory, checking, etc.</td>
</tr>
<tr>
<td>Entity Names</td>
<td>Adding plant entity data – yet to be documented.</td>
</tr>
<tr>
<td>RSO requests</td>
<td>Requests Scheduling and Ordering for garden plants.</td>
</tr>
</tbody>
</table>

This list is likely to be extended for other data categories.

Managing RDE files

Introduction

The option Rapid Data Entry > RDE File Manager opens the RDE file manager. This table lists all the RDE files that you have access to. This will include files in your default storage folder Documents\BRAHMS\RDE and files in other RDE folders that have been registered and that you have access to.
A sample RDE manager showing files located in different folders.

Normally, you will create an RDE file for a particular task, for example, for logging data from a field trip, entering data for selected specimens, gathering data for a botanic garden inventory, etc. If working in a larger museum, your project may have numerous RDE files stored across different folders each of these with different access permissions.

<table>
<thead>
<tr>
<th>Manager option</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggle Archive Flag</td>
<td>Set Is Archived true/false</td>
</tr>
<tr>
<td>Hide archived files</td>
<td>Do not list archived files</td>
</tr>
<tr>
<td>Refresh List</td>
<td>Force update RDE list from your BRAHMS/RDE folder</td>
</tr>
<tr>
<td>Open</td>
<td>Open RDE file to view/edit (or double-click the file name in the manager)</td>
</tr>
<tr>
<td>Delete</td>
<td>Physically delete an RDE file</td>
</tr>
<tr>
<td>Edit</td>
<td>Edit details about the RDE file (meta data)</td>
</tr>
<tr>
<td>Copy RDE</td>
<td>Make a copy of an RDE file</td>
</tr>
<tr>
<td>Create RDE</td>
<td>Create a new RDE file of a selected category</td>
</tr>
</tbody>
</table>

Registering RDE folders

Open the RDE Folder Manager using the option provided on the RDE toolbar.

Registering a new RDE folder

RDE files can be stored in any registered folder. New folders are added using the Add option. Folders can use UNC paths or drive letters. Only project/database administrators have access to the folder management options. Administrators can also assign access permissions to one or more non-admin level users.

Assigning user access to RDE folders

All users with access to the RDE module, regardless of their database role, have access to their default Documents\BRAHMS\RDE folder. Beyond this, non-admin and non-manager users need to be given access to folder(s) by the system administrator or database manager.
Non-admin/manager users are listed on the left and can be moved to the Assigned Uses list on the right.

To assign user access to an RDE folder:

- Ensure the folders you wish to share are added to the RDE manager folder list. Clearly the folders have to be accessible to your user(s). **NB:** Only non-Admin users are listed. Admin level users have access to all folders by default.
- You can provide many users access to the same folder.

Designing and creating new RDE files

Introduction

Designing and creating new, empty RDE files with the correct field structure is a key aspect of the data capture process for many projects. This section explains how to create new RDE files with the optimal design for different RDE data categories.

Each category of RDE (specimens, living collections, seed accessions, etc.) is provided with a set of fields you can choose from when designing and saving your own templates. Once you have designed templates, these can then be made available to all users. You may wish to restrict the ability of non-admin users so that they must create their own RDE files from one or more pre-designed project templates. This helps standardise RDE data file structure and use across your project.

Setup options

Under **System > Options > Rapid Data Entry (RDE) > RDE Creation**, you can choose which RDE file create options are available to users by default:

a) RDE file creation Wizard which provides access to the file designer/column manager
b) Select from pre-defined project templates.
c) Both of these options.

In addition, by setting user-level permissions, you can fine-tune which users have access to the available options. Note that Admin users always have access to both the Wizard and pre-defined templates. If mostly, you want standard users to only use pre-defined templates, de-select **Show the RDE Creation Wizard** here and then you can override that for particular users as needed in the user permission settings.
Setting up RDE file creation options.

The RDE Templates Folder should be a shared folder that all users who are creating new RDE files (using the templates option) have access to. You can add all your RDE template files into this folder.

User permissions

With User System > Manage Users & Permissions > Access/Permissions > Specific Actions, you can set the permissions for individual users to access the RDE file creation wizard and/or template selection only.

Showing part of the Specific Actions tab when editing user permissions. This user can only access RDE templates that have already been designed and made available. The user is unable to use the RDE Create Wizard.

Creating RDE files using the Wizard

A user that has appropriate permissions can design new RDE file templates using the RDE Create Wizard. After choosing the category of RDE data, the fields to include can be selected from the standard RDE field list. Custom fields can also be added if needed.

You must first select an RDE file category and name. The RDE file will be created in the designated RDE folder.
The RDE file Create Wizard allows you to select any fields from the list provided – also to add custom fields. The new file is given a name and saved to a registered RDE folder.

Creating RDE files from pre-existing templates

A user with no access to the Wizard will have to choose one of the pre-designed RDE templates available in the list. All RDE files stored in the designated RDE templates folder (see above) will be listed here. Note that the new RDE file will be created in the designated RDE folder. The folders a user has access to are discussed in the section on access to RDE folders.

Deleting RDE files

If an RDE file is deleted from your computer, it will auto-disappear from the manager list. If you use the BRAHMS delete option in the data grid, this will also delete the physical file from your computer.
RDE files can be deleted using the standard two-step delete function. But you can also delete the file from your PC using your file manager. RDE files moved to a non-registered folder will not be listed in the manager.

Opening and adding data to RDE

To open any RDE file, double-click on the file name or use the Open option on the RDE toolbar. As with all other tables, you need to switch to Edit mode to be able to edit the data. To optimise RDE entry, you will use your lookup up lists as described in the section Using and editing lookup lists.

It will also be useful to be familiar with the keyboard shortcuts as described in the section Grid navigation basics and keyboard and function keys.

Quick Value Selection Tool

When you are in an opened RDE file which already has data added, you can use the Quick Data Selector tool to help add or update data values in the file.

Once opened, and you are in Edit mode, the tool lists all values in the currently selected column. These values are only listed from the current RDE file, not the main database.

- The Filter option on the Data Selector is used to locate the required value.
- Double-click on a value adds the value to the RDE field.
- Set the Clear filter option to clear filter when you move column/row.
- Auto-move to the next field or row after making a selection.
The Quick Data Selector tool can make working in RDE files more efficient. The data values listed auto-update as you move columns.

Force lookups for selected fields in RDE

To prevent users adding incorrect entries to RDE fields, you can enforce lookups for certain fields and field groups. To do this, select **System > Options > Rapid Data Entry > Forced Lookups**. Here you can select a data group e.g. Taxonomy Group and within that group, enforce lookups to the level you wish. For example, you may allow free text entry for specific epithets – but not for family/genus names. Similar options apply to other categories of data.

Settings apply to all users.

As an example, if you enable Taxonomy Group and select Genus Names, this means that genus names or higher rank cannot be freely edited. However, species epithets can be freely added. If you select Taxon Name Epithets, the user would be unable to freely enter any species level text – they would have to use a lookup.

With these settings, a user could freely add new species and place names but not family, genus and country names. The other groups shown here have not been restricted.

Optimising data entry using RDE

The following points can be considered to optimise data entry in RDE files:

- Ensure that the visible fields and their order in the file is optimal for your project.
• RDE is more efficient when you can use lookups. If your database has good dictionaries of species, geographic and collector names — together with other custom lookups, data entry will be faster and more reliable. With good lookups, you are then in a position to force selection for a defined list or allow the data entry person to add new entries.

• The Quick Value Selection Tool is very handy in RDE. This tool lists all the values in the current RDE file for the current column allowing rapid selection of a value. The tool window can be configured in a number of ways to speed up data selection.

• Use F4 to copy the last field and Ctrl+F4 to copy an entire record. In general, learn to use the short cut keys provided in Shift+F1.

• If adding map data, open the ArcGIS map window (ideally on a separate monitor) to see your map data dynamically update and easily check for map point errors.

Importing to RDE from Excel tables

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#lcexceltorde

Data and images can be imported from .xlsx tables into RDE using the Excel Data Import Wizard. This tool allows you to locate and open an Excel .xlsx file, then match the columns in the file to your opened RDE file. The matching between Excel and RDE columns can be adjusted as necessary to pull in as many fields as possible. This process also allows you to import data from custom fields — assuming the custom fields have been added to your RDE file. It also means that field names in foreign languages can be mapped to the standard names.

The above screens show the matching process and the data processed and ready to import to RDE

The data now transferred into the RDE file.

Excel to RDE field matching

When importing data from Excel into an RDE file, BRAHMS has to know how to match your Excel columns to the correct fields in BRAHMS. For example, you may have a field in Excel with the column heading ‘Decimal Latitude’ that you want to go to the standard BRAHMS field ‘Latitude’. Or you may have a field in a different language such as the Portuguese ‘Pais’ or the Chinese ‘国家’ that you want to map to the BRAHMS column ‘Country’. The process of field matching is described in the section on Excel to BRAHMS field matching.
Excel to RDE matching and transfer

As well as append data to an RDE using the Excel to RDE importer, you can also add data to existing RDE records using the Match/Transfer function. For example, you may already have an RDE file with many records and then acquire some useful additional data you would like to add to this RDE file. As long as you can match the records in RDE to those in the Excel file, you can do this.

Adding images to RDE files

You can add one to many images to each record in your RDE file. Images can be dragged onto the standard image viewer or imported from Excel worksheets.

When importing from Excel, this will add one record per image to your RDE file. An example use is when digitizing data from specimen labels. Thus, a folder of specimen images (with label data) may be imported to an RDE file, the images can be opened in RDE, perhaps using a second monitor, and the data from the labels added to the file.

All aspects of image management including RDE related topics are discussed in the images section of this guide.

Copying/ Renaming RDE files

You can copy an RDE file with or without data and also rename an RDE file. Additions or changes made here will be updated in your RDE manager list.

RDE file import analysis

RDE file ‘analysis’ refers to the process of quality control, allowing you to assess data in your RDE file that are new to BRAHMS. This refers to the data that would be imported and distributed to the various different BRAHMS tables as the RDE file is imported. This applied to all categories of data, examples are family, genus, species, country/place names, collections etc. The checks made depend on the category of RDE file you are working with.

The analysis phase reports on progress – it large RDE files, this may take a while.
At the end of the analysis phase, you can see what exists and what would be added. You can filter on the report grid as useful, for example, adding "N" to the Status filter row will show new records.

After analysis, you may prefer to go back to edit the data rather than import the data.

Transferring RDE files into BRAHMS

Following on from the above analysis phase, using Next you can then opt to proceed to the next stage. If your RDE file includes custom fields (non-standard fields) that have not been registered in your database, you can register these now. If you do not, these data will not be imported.

Optionally register custom fields. This form shows fields that are in your RDE file but are not registered in BRAHMS.

Selecting Next again will take you to the Import page. Here you can opt to start the import. This stage adds the RDE data to the various main database tables, providing feedback as it proceeds. Large RDE files will take some time to process.
The final stage of importing transfers the data into BRAHMS.

In summary, when you import an RDE file, the system checks the data and populates the various related tables in BRAHMS. For example, if your RDE file includes a family name not already stored in BRAHMS, that family name would be added to the family table. Data can easily be edited in BRAHMS after import. However, as a rule, it is always better to try to remove the ‘big errors’ prior to importing, for example mis-spelt country, family or genus names.

A closer look at RDE files for collection events and preserved specimens

To create a new RDE file, refer to the section on Designing and Creating new RDE files.

RDE files for specimens, be they animals, plants, fungi, microorganisms or any category of natural history data, share a number of features in common. This section lists a few points to consider when planning data entry.

RDE files for specimens are fundamentally collection event records storing the collector and field number; the collection date and place; the identification (albeit preliminary); and descriptive texts under various headings.

A record may be an observation or another type of entry with no physical specimens. In this case, the record will have no entry in the Institute code field. If the record has no entry in the Institute code field, it is considered to be simply a collection event record with no physical specimens. And if the file is transferred to BRAHMS, it will add collection event records – but it cannot add specimens.

Match criteria when importing

When importing an RDE file category ‘Specimens’, the file will consist of collection event records, optionally with physical specimens. Collection events are compared and matched with records already in BRAHMS using the following criteria:
GazetteerId* + FieldNumber + Prefix + Suffix + Collection Day + Month + Year + Locality Notes (Sometimes LocalityNotes may be the only difference in location data)

If there is more than 1 match on the above, then SpeciesId is also used. If there is still more than 1 match, Collectors** (uppercased) are also used. If there is still more than 1 match, the matches are ordered in descending order of the specimen count and then BRAHMS takes the first match (i.e. the one with most associated specimens).

*The gazetteer ID itself is generated for new CountryName + MajorAdminArea + MinorAdminArea + LocalityName.

** Collectors are generally left to the end for evaluation as their exact text matching tends to be less reliable that numbers and dates etc.

For Specimens, if the collection event is found to be new then all associated specimens are assumed to be new and no further matching takes place. Otherwise, specimens are matched on all of: CollectionEventId + Museum/herbarium code + SpecimenAccession + SpecimenBarcode.

Force new collection event

In specimen RDE files, you can tick the option 'Force New CE', record by record, to force a new collection event (CE) per specimen. If you have specimens with very little CE level data, this may lead to these specimens being linked, inappropriately to a single CE. The ‘force new’ option can be used to make sure each specimen is linked to its own CE record.

Force use existing collection event

In RDE files, the Collection Event lookup will backload the GUID of the CE record in your BRAHMS database and by default, will tick the new field 'Force Existing CE'. On importing to BRAHMS, any RDE records that have this field ticked will locate the correct CE record and link the RDE specimen data to these located CE records.

Specimens and the Institute code

If the RDE file has a museum code (or equivalent) in the Institute code field, this implies that the collection event record has a physical specimen stored at that location. When these data are transferred to BRAHMS, the event will be added together with a specimen record. Certain fields in the RDE file are clearly part of the specimen record – rather than the collection event itself. These fields, any of which may not be available, include Specimen category, Barcode, Accession#, Folder and Box barcodes and several fields related to type status. Any of these fields, if added, would be stored in the specimen table – linked to the collection event itself. For more details about specimens and their determinations, refer to the section Collection events, Specimens and Determinations.

Adding multiple specimens per collection event

If you want to add multiple specimens per event at one time – for example, you have knowledge that the event resulted in several specimens (duplicates in the botanical world), you must copy the collection event record and then edit the Institute code for each different specimen. You may also know the specimen category, barcode and accession # for each specimen – and these data can be entered as available. Specimens may have type status (holotype, isotype, etc.) and, as discussed further below, may have more than one determination.

When the data are transferred to BRAHMS, only one collection event will be added (see match criteria above). If any collection event criteria used in field matching are different, the system will add a separate collection event record. RDE records are easily duplicated down using Ctrl+F4 – then edited as required to change the fields that apply to the different specimens. You may have more than one entry for the same museum code.
Adding multiple determinations per specimen

Importing RDE files for living collection data

Introduction

Living Collection RDE files are designed to batch add data for accessions and plants – and also to transfer data from other formats via Excel.

Although these files import in the same way as other RDE files, a number of special conditions arise. Living collection RDE files may include data for the **accessions** and also the **plants** themselves. Given that there may be more than one plant record per accession, the RDE file has to correctly link these data.

Create a new RDE file

To create a new RDE file, refer to the section on [Designing and Creating new RDE files](#).

Import data from Excel to RDE

If you have data in MS Excel to transfer to BRAHMS – this can be done using the [Import from Excel](#) option on the RDE menu. Refer to the rules for accession and plant numbering below.

This process is also described on the video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#lcexceltorde

Manually adding data to an RDE file

Once you are Edit mode, you can freely add data to your RDE file. To speed up data entry, it is always useful to have as many lookup lists as possible in your database. Editing lookup lists is described in the [section on lookups](#). Thus, rather than type in a value, you will be able to select it from a lookup function.

An example RDE file with data added.

Rules for accession and plant numbering in RDE files

In general, accession and plant numbering are controlled by your system format settings option for [living collection accession numbering](#). In RDE files the following rules apply:
Accession numbering

1. If the Accession # is blank, it will not be imported.
2. If the Accession # field starts with "RDE", this is a signal to the importer to auto-generate the next available number for the current database. The Accession #s must however be made unique, for example using 'RDE1, RDE2, …' or 'RDE0001, RDE0002,…', ‘RDEabc,…’ or as you wish.
3. On importing, the RDE Accession #s are converted to the numbering system assigned in your configuration setting. Thus 'RDE1' may be converted to '2019-00050' and RDE2 to '2019-00051'.
4. If you add an Accession # entry lacking the text string 'RDE', such as '12345' or '2019-100', it will be added as entered, assuming it is new to the database. If it is not new, it is not added.
5. As described below, you can repeat an Accession # in the RDE file if you have multiple plants to import. Note, if repeating an accession entry (i.e. multiple plants), the accession details need only be entered in the first record.

Plant ID numbering

1. If the Plant ID field is blank, no plant record is added for the accession.
2. If the plant ID field is set to '*', a plant record will be added for the current accession and the Plant ID will be auto-calculated using '2019-100*1', '12345*1', etc.
3. If the Plant ID is added as a string as in '0012345' or '2019-50*1', it will be added as entered, assuming unique.
4. If the Accession # is repeated in the RDE file, for example, there are 3 records all with Accession # 'RDE0001', and each record has Plant ID set to *, this would result in one accession record with 3 linked plant records.

Adding Garden code/name to your RDE file

Before importing your RDE file, you must ensure all records have a garden code/name entry. This is because all accessions are linked to a garden. Clearly, this is required for single and multi-site projects. Any records that do not have a garden code/name will not be processed by the RDE importer. An RDE file may contain records for more than one garden/site.

If all entries in the RDE file are the same, use a standard lookup option to select the garden for one record, for example the first record, then use the function Autofill Garden... to add the same entry to all records.

Transfer all or restrict to tagged

Once your RDE file is ready and with the RDE file still open, select Rapid Data Entry > Transfer RDE to BRAHMS...
At this stage you can optionally restrict the transfer to tagged records.

After running the analysis which creates an import log which you can view/print, you can proceed as prompted by the Import Wizard to import the data.

The analysis reports on the status of your RDE file import. In this example, everything in the above list is new to the database and will thus be added to the relevant dictionary.

Importing custom fields from RDE

If your RDE file includes non-standard fields, you will be asked to register these. These fields will be auto-added to the main plants table structure and the data transferred there.
The complete import history for a given RDE file can be viewed from the RDE manager after the RDE file is closed.

Images in RDE files

Linking images

You can link 1:many images to each record in RDE. Images can be stored in any accessible folder. Images are viewed and linked using the Images option on the Data Tools toolbar. This opens the Linked Image Viewer.

Images can be dragged onto the viewer – or you can use the Link option provided. The images and the image link details are stored in separate tables in the RDE file. Bear in mind that behind the scenes, RDE files are in fact mini databases with several related tables.

As discussed in the section Images from Excel, images can be imported from Excel along with other data.

An RDE record with a linked specimen image and another record with 2 habit images.

Importing images from a selected folder

If you have a folder of RDE images, you can import these to an opened RDE file – creating one new record per image in the selected folder.
To append images from a selected folder, use the Import Images option on the Rapid Data Entry toolbar.
Example: opening an RDE file, mapping and printing labels

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#labelstoppt

Reporting in BRAHMS provides almost limitless power to generate lists, labels, charts, cross-tabs and more. You can print reports directly from BRAHMS or send the outputs to documents, excel, pptx and elsewhere.

You are encouraged to experiment with report design and you can also open and use a sample provided for printing basic museum labels. Clearly, each institution has label design preferences, hence, it will be necessary to learn how to use the report designer.

This example opens an RDE file of specimen data prepared by J.R.I. Wood (Oxford) from his field work in Bolivia. To proceed with this task:

- First download the file RDE_Bolivia_JRIWood.zip and open the zip to the folder Documents/BRAHMS/RDE. The zip file includes an RDE file of specimens and a report template sample for labels.
- Log onto BRAHMS – choosing any project and select Rapid Data Entry > RDE File Manager. This will list any RDE files located in your BRAHMS\RDE folder.
- To open the RDE file, double-click on the RDE manager entry ‘John Wood Collections 2018’.
- Explore this RDE file using the Column Summary option on the Data Tools toolbar and, optionally, you could design a Tree View.

![An example Tree View designed to show geographic data including locality notes.]

- To map the file, select Mapping > ArcGIS in BRAHMS. Initially, if no records are tagged, no points will be plotted. To map the entire file, remove the mark from Tagged only on the map toolbar.

![The RDE file mapped with the Tagged only option de-selected. If you now tag some records, you can use that option to restrict the map to tagged.]

To produce some labels, you will need to tag some records as the reporter only works with tagged records. If you wanted to print labels for the entire file, use the Tag all option on the Tag dropdown – otherwise manually tag some records.
To open this report, select Reports then File > Browse and locate the report file ‘RDE specimen labels.mrt’ which was provided in the zip file downloaded above.

To view the labels, select the Preview tab.

On the Preview tab, you can choose various output options including MS Word. If exported to MS Word etc., your labels can be edited prior to printing.

If you wanted to explore reporting options more fully, you could now select File > New and choose one of the report wizards such as standard report wizard. In no time, you can create a new report template such as the one shown above.
Example: importing taxa from Excel or IPNI to RDE and BRAHMS

This exercise demonstrates how you can pull in a list of taxon names from Excel or IPNI to RDE – and then transfer these data into a BRAHMS database. The exercise starts with an import from IPNI (International Plant Names Index) but you can substitute the IPNI approach with an Excel file as discussed in the next task.

- While logged in to any database, select Rapid Data Entry > RDE File Manager.
- Again, select Rapid Data Entry and choose Create RDE … be sure to choose the category ‘Taxonomy’ and giving the RDE file a suitable title.
- You can adjust the default columns or add new ones if needed but otherwise, proceed to Finish to create the new file using the defaults.
- Open the file (double-click your new entry) and from the Rapid Data Entry toolbar, select Import Data from IPNI.
- Enter the name of a genus at the IPNI prompt (or a different search criterion as needed) - then Search.
- Once the name list is assembled, select Import BRAHMS records to RDE. There will be a delay as the data are transferred into the RDE file – if you have a lot of records, this may take some time.

Showing the data searched using IPNI for the genus Vatica - and then transferred to RDE.

The next stage, should you wish to do so, is to transfer these RDE data into your database. Normally, before doing so, the data would be checked and edited appropriately. This is one of the functions of RDE. If you are logged into the Conifer demo, you can import the data there.

- With the RDE file opened, select Rapid Data Entry > Transfer RDE to BRAHMS. You can use the option Analyse RDE file first but in fact, the analysis always takes place when you run the transfer option.

After running the Data Analysis, you can review the Import Report and apply filters as here showing subsp. This indicates these records are new to BRAHMS.

The import log includes more detail and can be saved to a text file.
Before deciding to transfer the RDE file into your database, you can also use the option **Show analysis flags** on the RDE menu. This displays a series of Boolean flags indicating the status of the data about to be imported. If a record is ticked, this means it’s a new entry. You can set filters on these flags using the grid filter bar.

The RDE analysis flags indicate the same information provided in the report with new entries flagged up in the various tick boxes. You can use the grid filter row to set filters, for example, to show new families.

Once satisfied the data are good to go, you can then Select **Next** on the import tool and select **Run to Import the data**.

Showing the data now added to the main species table, here sorted by *Created on*.
Example: importing your own sample data using RDE

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#importingfromexcel

This exercise encourages you to work with your own data, perhaps a list of taxa or better still, some specimens. These may be animal or plant data, whatever you have. The task is to transfer these from an Excel XLSX table into a BRAHMS Rapid Data Entry (RDE) file. Your data can be for any of the categories currently listed in the RDE manager when you create a new RDE table.

- **Select** Rapid Data Entry > RDE File Manager.
- **Click** again on the Rapid Data Entry menu and then **choose** Create RDE ... choosing the appropriate category. If you want to add collection data, this will be *Specimens*. Give your file a Title such as *Field trip 2018* or *My Orthoptera collection*.
- **On** the next step of RDE file creation, you choose the default fields to display in the RDE file. You can also add custom fields using Custom column Editor on the left part of the screen. You can alter the default field order at this stage using the Move column options (clicking to the left side of the field to move to activate this).

![Adding custom columns to a new RDE file. Note that setting the char size to 0 for a text field create a max length character field.](image)

If you now double-click on your RDE file, it will open as an empty file.

![The yellow row at the top of this empty RDE file is the grid filter bar - not used for data entry.](image)

At this stage you can switch to Edit mode and manually add records. But in this example, we discuss how you can import data from and XLSX file. The next steps assume you have some data in a XLSX file to import. We recommend at this stage that your XLSX file has a maximum of about 1000 records for testing.

On the Rapid Data Entry menu, select **Import from Excel**... This opens the Excel import wizard. You can select the XLSX file and then match the columns between your XLSX and your RDE files.
As an example, the RDE file includes a field Latitude which is matched to a field LAT in the XLSX file. By matching the fields, you will import the data correctly. Where fields have the same names, they should be auto-matched.

Of course, the data have to be broadly in the correct format before transferring to RDE. For example, collection event dates are stored in the 3 numeric fields Collection Day, Collection Month and Collection Year. So, if your XLSX file has this in a date field, you would need to convert the data to 3 numeric fields first. Also, for mapping, map data in the Latitude and Longitude fields should be decimal format and negative for South and West.

Troubleshooting

If you have old versions of RDE files (data structures out of date) within your RDE folders, these may prevent you from seeing any RDE files – including new ones. In such cases, please delete the old RDE files and the new RDE will appear in your RDE file view. Old RDE files may have been created in a testing phase.
Mapping your data

Introduction

Mapping options include dynamic links to the in-built ArcGIS and externally, by passing data to ArcGIS, Google Earth, DIVA, QGIS and GeoCAT.

You can map your data directly from BRAHMS as long as the data table includes the equivalent of Latitude and Longitude fields. Currently, this applies to all collection events, the botanic garden plant tables and the equivalents of these in RDE tables. Mapping options are provided as follows:

<table>
<thead>
<tr>
<th>Map option</th>
<th>Installation required</th>
<th>Must be online</th>
<th>Base maps required</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAHMS ArcGIS API</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ArcGIS / ArcMap</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>QGIS</td>
<td>Yes free</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Diva GIS</td>
<td>Yes free</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>GeoCAT</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Google Earth</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Download details for any required software and base maps are provide below.

The choice of mapping tools depends on your objectives. For example, the built-in ArcGIS API is especially good for viewing and editing data, locating errors, map searches, certain calculations, and creating map images that can be added to reports. If your objective is to produce high quality maps for publication, you will likely choose QGIS, Diva or ArcGIS. Links to Google Earth are being developed mostly for analysis. GeoCAT is used to calculate EOO and AOO.

The main mapping changes in v8 (coming from v7) are the addition of the in-built ArcGIS API; the map location editor tools; and that all map point data are stored only in decimal degree format. Data entry in different units is reviewed below.

Map points

All map points for latitude and longitude are stored in decimal degree format with negative values for South and West. We no longer use the v7 NS and EW fields. However, as with v7, you can choose to add data in Degree Minute Seconds (DMS) Decimal Degrees (DD) or Decimal Minute (DM) format. Point data can be entered to 10 decimal places. The resolution of points can be stated using the coded LLResolution field. These codes can be used to select map points and also to control the format of calculated map text strings.

Mapping related fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>Latitude of the point</td>
</tr>
<tr>
<td>Longitude</td>
<td>Longitude of the point</td>
</tr>
<tr>
<td>LLResolution</td>
<td>Coded resolution of map data ranging from 1 to 8 (optional)</td>
</tr>
<tr>
<td>LLOrigin</td>
<td>Coded origin of map data (optional)</td>
</tr>
<tr>
<td>LLDatum</td>
<td>Geodetic Datum value e.g. WGS84, NAD83</td>
</tr>
<tr>
<td>QDS *</td>
<td>Quarter Degree Square value e.g. 2830CB</td>
</tr>
<tr>
<td># DGMS</td>
<td>Calculated field for labels e.g. 16° 19' 59.998" N, 96° 35' 59.999" W</td>
</tr>
<tr>
<td>Tag</td>
<td>Standard BRAHMS field – but can be used to control which records are plotted</td>
</tr>
</tbody>
</table>
Cultivated

Standard BRAMS field – can be used to control which records are plotted

Sources of vector and raster base maps and other map layers

There are numerous sources of map data available on the internet. http://www.diva-gis.org/Data has numerous layers with global coverage. Excellent raster and vector maps are also available on http://www.naturalearthdata.com/features/.

![Global raster and vector map data are freely available on](https://www.naturalearthdata.com/downloads/)

You do not need to download base maps and layers if you are using the in-built BRAHMS ArcGIS mapper, Google Earth or GeoCAT.

Thus as an example, if you wanted a vector (line) map for the world country outlines, you can visit https://www.naturalearthdata.com/downloads/ and choose Cultural (large scale data for the most detailed map) and download the Admin – O Countries file. There are many types of base map available for download under the cultural, physical and raster sections and you can pick and choose as relevant.

Once any downloaded data are extracted (always a good idea to organise your base map data in well organised folders), you can use these data to draw layers in e.g. QGIS or Diva. Examples are provided in the relevant sections below.

Adding and editing map points

Introduction

The map location editor can be used in RDE and in the main tables for collection events and botanic garden plant points. This can be tested in the RDE file opened above. You can use the map location editor to add a new map point or edit an existing one. You need to be online to use this feature in BRAHMS.

The editor opens an online map form which updates as you move through the data grid. Records with existing Latitude and Longitude points will be mapped using a single point on your selected base map. A right-click on the map resets the point position and either auto-saves this to the grid or awaits conformation with via the Save option.

Although data in BRAHMS are always stored in decimal degree format, you can manually enter data in degrees minutes and seconds or in decimal minute formats. However, the ability to select or edit the point on the map reduces the need to type in data.

Opening the map point editor

To open the map point editor, you can either use the standard lookup in the Latitude or Longitude fields or alternatively, use the Map point editor option on the map toolbar. This latter option can be used from any field in the current record. It does not require you to be in edit mode although you do need edit rights.

Once opened, the location editor can be used to edit points and altitude in your data grid.

The map location editor displaying the current point, set to Auto-save. In this mode, a right-click on the map will update the Latitude and Longitude values in the data grid without using the Save option. This screen has no zoom and is displaying the entire globe.

The same point displayed at very different zoom levels.
Location editor settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base map</td>
<td>Choose base map that best suits the editing task in hand.</td>
</tr>
<tr>
<td>Auto-zoom on/off</td>
<td>If selected, as you move to different records, the map zooms to the current point using your zoom scale setting.</td>
</tr>
<tr>
<td>Zoom to marker</td>
<td>Zoom to current point based on your Zoom Scale setting.</td>
</tr>
<tr>
<td>Zoom Scale</td>
<td>Choose the optimal zoom setting. Maximum shows a world map.</td>
</tr>
<tr>
<td>Reset Zoom</td>
<td>Reset the zoom, if adjusted, to your current setting.</td>
</tr>
<tr>
<td>Map units</td>
<td>Select the entry mode for manually editing data.</td>
</tr>
<tr>
<td>Lat Long checked</td>
<td>Mark a record as ‘map checked’.</td>
</tr>
<tr>
<td>Auto-save</td>
<td>If selected, a right-click on the map will adjust the point and save the map point change.</td>
</tr>
</tbody>
</table>

Selecting the optimal zoom level

The optimal zoom level will vary from task to task. You can adjust zoom by double-clicking the map, using your mouse wheel or using shift + drag box around the area of interest. The speed of screen update depends on the number of map tiles the system needs to download. As a rule, the closer you zoom in, the slower the system will respond as you move to new records. Also note that different base maps influence speed. Some experimentation is needed to check the optimal settings.

Sorting by collection date or by latitude + longitude

If you sort the data grid by collection year then month then day, you can then scroll down the data grid to follow a collector’s itinerary. This can be a useful way to resolve collection locations and field number sequence errors.

If you sort the data grid by latitude and longitude, as you scroll down the grid, the points will follow the geographic sort.

Location searching

The internal Map Point Editor, dynamically connected to your data grids, has a location search tool. Localities can be searched for by name or part of a name, adding a region or country to help improve the results listed. Clicking on the suggested locations list adds a blue suggestion marker to the map. A right-click on the map adds the map reference to the data grid. The location search is very similar to that provided in e.g. Google Earth.

Calculating distances with the Map Point Editor

It is often necessary to adjust a map point position based on a distance measurement, for example where collection locality notes say ‘20km west along route 249’. This is done using the internal Map Point Editor Distance Measurements option. Distances can be calculated in different units and the corrected point can be auto-added to your data grid.
After drawing a polyline, a right-click on the map will update the data grid map reference.

Mapping using the ArcGIS API

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#mapping

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#mappingvideo
Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#gardenmapping

Introduction

The in-built ArcGIS API provides a wealth of handy mapping features which you can take advantage of without installing any further GIS software. However, you do need to be online. Some advantages of the in-built ArcGIS tool:

- No installation required;
- Data points are highlighted on the map as you browse through your data grid;
- Clicking on a map point tags records 'M' in your data grid, an excellent way to locate errors;
- Maps are auto-updated as you apply grid filters;
- Calculation of Extent of Occurrence (EOO);
- Selectable base map including world imagery;
- Map tagged only or map all, exclude cultivated records;
- Apply map point colours based on tag colours;
- Search maps;
- Save map as a png file and import to a document.

Preparing some sample distribution maps

- Select Collections > Collection events then select the Mapping toolbar followed by ArcGIS in BRAHMS. If no filter is applied, by default, this will plot all tagged records. To plot records, tagged or not, adjust the Tagged only option. The map window can be dragged to another monitor and made full screen size.
A map displaying all conifer collections (no filters applied). The setting here does not restrict to tagged records and a dark gray base map is selected. The current record (Kenya) is highlighted on the map.

Here, a filter set on New Zealand with the base map set to World imagery, the point colour has been changed and the current grid record is highlighted.
In this example, the collection events are docked below the species table which is set to show accepted names only. The Taxa menu Link Grids option has been selected. Thus, moving to a new record in the species grid will update the collection events and the map.

An example using the main query tool to define a rectangular grid area. This is a useful way to save a commonly used search similar to ‘grid box’ searches in version 7.

This example, taken from The Morton Arboretum database, shows gardens plants filtered on Plant Status = ‘A’ (Alive) and Planted Year before 1995. The Column Summary shows the number of plants per taxa.
Map point tagging

Using the Toggle tag option, you can click on map points to tag ‘M’. These may be error points that you want to check. You can then use the map Filter toolbar to filter your grid to the M tagged records.

Clicking on map points with tag mode enabled, you can selectively mark up map point then filter your data grid.

Map searches

Using the Draw search area option on the Map toolbar, you can drag a search area and then use Search drawn areas to apply the search filter.

This example shows a map searched directly using the search tools. The data grid is updated accordingly. The Column Summary tool, here docked left, is displaying the number of collection event records per taxa within the selected area.

Map Auto-Zoom

By default, maps will zoom to display the boundaries of the selected data points. However, it can also be convenient to disable Auto-Zoom to be able to display species distributions on a fixed area.
With the ArcGIS Auto Zoom disabled, you can plot different taxa without changing the current base map area.

Map point colours

You can respect record tag colours by selecting the Use Tag Colours option on the map itself. Tag colours can be defined from System > Options > Tag Highlight Colours.

Locating and editing map errors – some hints and tricks

Most museum or garden databases with geo-referenced data include errors. Map data errors have many potential causes and correcting these is often a priority for projects.
The above map is from a gathering of data mostly from Brazil. The errors look a lot worse than they are as the vast majority can be fixed by simply adjusting the north-southing and/or the east-westing of the points. This would be done by ensuring any points known to be ‘west’ have negative longitude value.

- Set a filter
- Use a map search plus SQL command

Setup for ArcMap, QGIS, DiVA

While BRAHMS does its best to locate these programs in your computer registry, some installation locations are harder to find. Thus, you can explicitly link the start-up exe or bat files for these GIS packages.

Select System > Options > Mapping to hardwire the locations of the start-up files.

Setting GIS start-up locations.

Mapping using ArcMAP

Introduction

If you are an ArcGIS/ArcMAP user and have this software installed on your local PC or network, you can connect from BRAHMS, passing data to new or existing map projects. As discussed below, assuming the BRAHMS data output file is added as a data layer in your project, the map points will be added to your map dynamically.

Map points and the arcmap_data.csv file

Map points in BRAHMS are stored in main collection events file, the living collections table and in the main gazetteer - together with other map related fields. When you create maps, the relevant data from all tagged records are used to create the csv file arcmap_data.csv. As discussed below, this file can be included in your map project.

The arcmap_data.csv file includes fields gathered from BRAHMS, these depending on the category of data being mapped.
A selection of the fields available in the *arcmap_data.csv*

Data fields passed to ArcMAP

When you plot data to ArcMAP, all of the fields in your currently selected field view are passed in csv format. You can include standard and custom fields. The fields Latitude and Longitude must be included.

RecordID and data editing

The **Record ID** is the GUID identifier of the record in BRAHMS. This means that selected data can be edited using GIS tools and then transferred back to BRAHMS, updating the table accordingly. For example, you may have used some tools you have added to or developed in ArcMAP to check and adjust map points. By exporting the revised Latitude Longitude points together with the GUID, you can then easily update your database using the **Match/Transfer tool**. This would equally apply to data returned from a hand held device.

Opening a new or saved ArcMAP project

To open ArcMAP, use the **ArcMAP** option on the **Maps** toolbar. Note that this option will not be enabled if you have selected Tagged Only and no records are tagged. Mapping output will respect filters. Thus, you can set a filter (in the example below a country name) and/or restrict to tagged records.

```
<table>
<thead>
<tr>
<th>System</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAHMS</td>
<td>ArcMAP</td>
<td>Maps option on Maps toolbar; enabled if not Tagged Only and no tagged records.</td>
</tr>
</tbody>
</table>
```

The **ArcMAP option will not be enabled if you have selected Tagged only but have no tagged records.**

Opening ArcMAP with no project selection. Right. Selecting an existing project (default).
Here, an existing project has been opened and using the **Add Data** option on the ArcMAP toolbar, the BRAHMS output file `arcmap_data.csv` is located. Note that you may need to register this data folder so that ArcMAP can locate your csv data file.

At this stage, you could open this table by right-clicking on the csv and select **Open**. The next step is to correctly register this csv data file as a map layer. To do this, right-click on the csv and select **Display XY Data**.

Ensure the Longitude and Latitude fields are correctly selected. Using the Edit option, set the Geographic Coordinate System as required – the default used by BRAHMS is World WGS 1984.
With `arcmap_data.csv` correctly registered, the point data passed from BRAHMS will automatically update when a new map is produced.

The above map produced from the Red Butte Garden database was created by applying a filter to their garden locality named ‘Floral Walk’ and plotting directly to ArcMAP.
Mapping using QGIS

Introduction

Video samples are provided on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos

QGIS is a mapping package – freely available on https://www.qgis.org/en/site/ (or just search for QGIS). BRAHMS can connect and pass data to QGIS – but you have to install the QGIS software locally first.

Map points and the qgis_data.csv file.

Map points in BRAHMS are stored in main collection events file, the living collections table and in the main gazetteer - together with other map related fields. When you create maps, the relevant data from all tagged records are used to create the csv file qgis_data.csv. As discussed below, this file can be included in your map project.

The qgis_data.csv file includes fields gathered from BRAHMS, these depending on the category of data being mapped.

Fields passed to QGIS

When you plot data to QGIS, all of the fields in your currently selected field view are passed in csv format. You can include standard and custom fields. The fields Latitude and Longitude must be included.

RecordID and data editing

The Record ID is the GUID identifier of the record in BRAHMS. This means that selected data can be edited using GIS tools and then transferred back to BRAHMS, updating the table accordingly. For example, you may have used some tools you have added to or developed in QGIS to check and adjust map points. By exporting the revised Latitude Longitude points together with the GUID, you can then easily update your database using the Match/Transfer tool. This would equally apply to data returned from a hand held device.

Opening a new or saved QGIS project

To open QGIS, use the QGIS option on the Maps toolbar. Note that this option will not be enabled if you have selected Tagged Only and no records are tagged. Mapping output will respect filters. Thus, you can set a filter (in the example below a country name) and/or restrict to tagged records.

The QGIS option will not be enabled if you have selected Tagged only but have no tagged records.
Opening QGIS with no project selection. Right. Selecting an existing project (default).

Having opened a new project and added a map layer (here a global raster map), the next step is to add the data points layer as exported from BRAHMS in the *qgis_data.csv* file.

To do this, select **Layer > Add Layer > Add Delimited Text Layer**. Here you can locate the file *qgis_data.csv*. The X and Y fields should pick up Longitude and Latitude.

Once added, you can save the project with the registered data layer.

Once the csv file has been registered, any new map you plot from BRAHMS using the saved project will display the points from the supplied csv file.
Decimal point separators

The default for latitude/longitude values uses points as decimal separators. If you use commas, make sure you select the QGIS option as below:

![Record and Fields Options](image)

Mapping using Diva GIS

If you have diva installed (www.diva-gis.org/download), you can plot maps there using the same procedures used in v7. Unlike QGIS, it is not possible to pass and plot the map points directly. Instead, after opening Diva, you need to pull in the map points as discussed below.

Once Diva is opened (you may have chosen a saved project with existing map layers):

Add the map layer(s)

- In DIVA, select **Layer > Add layer** and locate a .SHP file to plot.
- Select one or more vector or raster SHP files.
- To select a different area on your base map, use the toolbar and drag a rectangle on your map. This can be done at any stage.
- To change the properties of a map layer such as the thickness of the map coastline, double-click the small map layer rectangle in the left DIVA margin and then dbl-click the small rectangle on the resulting properties form and set the layer properties as prompted. Note that these actions can be carried out on any layer listed in the left margin.

Add your map data points as a layer

- To add your map data, select **Data > Import points to Shapefile > From Text file (TXT)**.
- Click on the Input file option and locate the map file that you created above. The default input map name is **divagis_data.txt** located in your Documents/BRAHMS folder. The field delimiter is a **comma**.

![Create Shapefile from Text File](image)

Once you are at this stage, select **Apply** on the Diva form and your points will appear.
Mapping to Google Earth and GeoCAT

Assuming you have installed Google Earth on your PC, you can plot map directly using the option on the Mapping toolbar. GeoCAT is online and requires no installation. As with other mapping options, be sure that the **Tagged only** option is set as needed.

Mapping to Google Earth

![Google Earth Map](image1)

The species *Pinus balfouriana* plotted from the demo conifer database. Clicking on the data points displays selected field values.

Mapping to GeoCAT

![GeoCAT Map](image2)

The species *Pinus balfouriana* plotted to GeoCAT from the demo conifer database.
Reports and report templates

Best to use a large monitor and a mouse when working with report design.

Introduction

Rather that providing a fixed set of reports, BRAHMS provides tools that allow you to design and save your own report templates. These templates can then be used to produce almost any imaginable report output starting from basic lists and labels to more complex designs with indexes and calculated summaries. Video links are provided on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos.

BRAHMS is dynamically linked to a third-party reporting tool called Stimulsoft. We chose this as it is rich in reporting features and many of these can be controlled from within BRAHMS. Those interested to explore to full extent of its capabilities are encouraged to refer to https://www.stimulsoft.com/en/documentation/online/user-manual/ or to download from: https://admin.stimulsoft.com/documentation/Stimulsoft_Reports_User_Manual.en.pdf.

While the design steps in the examples that follow may seem daunting, once mastered, you will be able to design almost any report you need. It’s satisfying to conquer reporting and it makes your database efforts all the more worthwhile.

Quick lists using Print Preview

This option is separate to the main reporting tool. While it lacks the flexibility of the main reporter, this is a useful way to produce quick lists from the opened table, respecting any filters set and columns selected. Unlike the main reporter, this option does not work with tagged records – although you can set a filter on tagged records.
An example print-preview report with filters. It’s best to restrict to a small number of columns otherwise the report wraps to new pages – even if you choose landscape mode. Keep columns as narrow as possible.

The Report Manager

Introduction

The Report Manager (updated v8.1) is opened when you select Data Tools > Reports. The manager allows you to create and/or edit report templates; run reports; and register/unregister your templates. Only users with permission can create and edit templates. Most users on networked systems will use the Run option to use report templates that have already been designed.

Templates that are shared will be visible to all users. Thus, if you are a database manager/administrator, you can create and register (import) all the standard reporting templates you need for your users. Other users do not need to open the report designer – they will select the required report and run it. This will process all tagged records.

The Report Manager for a user that has create/edit permissions showing the various edit options on the right side.
Transfer reports from v8.0 to 8.1

When upgrading from v8.0 to 8.1, projects with existing report templates (.mrt files) should register these in the new Reports Manager. Open the Report Manager in the relevant table and use the Import... option. This option allows you to select your existing template mrt files and provide report names and descriptions. The Option T/F Flags option may be enabled so that you can define Additional Report Data/ table relations.

Registering a report in the Report Manager.

Reports that are Shared will be visible to all system users. The Additional Report Data option is only enabled where relevant.

Note garden plant label mrt files should also be registered in the plant labels list as in v8.0. If plant label reports are also registered in the Report Manager, they will also be available for general reporting as well as via the specialised plant label print options.

Report create/edit permissions

Admin level users will always have the ability to create and edit report templates. For other users, you can assign permissions as below:

System > Users and Permissions > Specific actions. A user that does not have these permissions assigned will only be able to run existing report templates as registered in your Report Manager for any given table.
The Report Manager as seen by a user that does not have create/edit permission.

Report template storage and the import/export options

When you design a new report template, the design is stored in a BRAHMS database table. This is a change of behaviour from earlier BRAHMS 8 versions where the templates were stored as external physical .mrt files.

If you have existing .mrt files, use the Import option to register these report templates. If you want to create .mrt report template files from your registered reports (e.g. to send to another project), use the Export option.

Sharing report templates

If you share a report template, all users will see and be able to use this report template. If you do not, it will only be visible to the user that created it.

Report templates

A report template is a report design file. Each template is a single file with a .mrt extension. In the latest BRAHMS versions (May 2022 onward), the templates are incorporated into your database and are not stored as external .mrt files. Templates can be given any sensible name (‘My RDE label’, ‘Genus Index’, etc.). They can be shared with other users.

Report templates are associated with a category of data and must be used with that category of data. If you design a report template for use in RDE specimen tables, it would not be possible to use this template in another type of RDE file or in the main database. Once designed, a given template can be used as often as is needed against any data in the appropriate table. For example, a report template designed for a specimen RDE could be used for any specimen RDE file you create. After creation, templates can be edited as needed.

When you open the reporter, you can choose the template to use from the File options – recently used or browse to locate.

The reporter is accessed from any table using the Reports option on the Data Tools toolbar. NB the Print Preview option is an entirely separate and more limited tool for creating quick tabular summaries based on your current field selection.
The icons on the left side are used to create reporting 'bands' and add other features such as images to your report. The menu at the top includes the main design, layout and preview options. The lower Properties tab displays all the available properties for the currently selected item (here the page properties). The Dictionary tab (not selected here) displays the available data table(s) and fields.

Using the Setup Toolbox, you can add many more tools to the left margin and further explore the reporter capabilities.
Preparing a basic taxa list

This preliminary example creates a tabular report with the family, genus and species names, but only printing the family and genus names when they change. Most of the steps in this example are discussed in more detail in the next report example. This first example uses minimal formatting.

Tagging the records for your report

The reporter is opened from any data grid using the Reports option on the Data Tools toolbar. When you open the reporter, BRAHMS only passes data from tagged records - thus, be sure to tag records to process before you select Reports. If you want to process all records in the current file, you must tag all the records.

- On the main menu, select Taxa > Species then use Tag > Clear Current Grid Tags.
- If you want to restrict this report to show only names where Taxon Status is Accepted, apply the appropriate filter. Then select Tag > Tag all (you can use any character).
- Select Reports to open the report designer.

Adding the data to your report

- Select the Dictionary option and drag the Species table icon onto the report surface. This opens a field selection form.
• Select the fields FamilyName, GenusName and CalcFullName and sort these as shown above.

<table>
<thead>
<tr>
<th>DataSpecies</th>
<th>Data Source</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Species.FamilyName)</td>
<td>(Species.GenusName)</td>
<td>(Species.CalcFullName)</td>
</tr>
</tbody>
</table>

This will add a DataSpecies report band as shown above. You can already Preview this list. After previewing, return to the editing mode using the Page tab. Previews may take some time to generate.

Next, adjust the field widths.

• Click on the FamilyName entry within the band and reduce the width by dragging the right edge or using the properties tab Width option. Resize the other fields allowing less space for the family/genus names but more space for the full species name. The widths can be refined later. You can also set field widths using the Position properties for the fields.

The next stage is to sort the data appropriately. Note that sort commands are stored within the report itself.

• To sort the data, double-click on the top of the newly added data band and choose the Sort option.
• Use Add Sort to add sort entries for the FamilyName and the CalcFullName.

As the CalcFullName includes the genus, it is not necessary to add genus to the sort list.

Previewsing the report will now display these data correctly sorted.

In order to print the Family and Genus names only when they change:

• Click on the {Species.FamilyName} field on the report and then select Properties.
• Under the Text Additional options, set ProcessingDuplicates to ‘Merge’.
• Repeat this for the GenusName.

If you Preview now, you will see that the edited fields appear once per name.

The table will look better if all the fields are aligned at the top of the cells. To do this:

• Select the fields one by one or shift click to select all three. Then use the Align Top option on the Home toolbar.
Using the Align Top toolbar option.

- **Save** and **Preview** the report.

Finally, for this basic list, set the font of the family and genus names to **Bold** by selecting these two fields and using the **B** font control on the main toolbar. Increase the font size slightly for the family and genus.

A sample of the final report. You could easily save this to a Word document using the Preview Save option.

Conditional formatting examples

The following general examples illustrate how you can use conditional formatting in reports for Text, Numeric and Boolean fields. These examples are based on an RDE specimen file where the table name is RdeCollectionEventRecord. Note – you can use IIF() or ternary expressions.

Text field – example printing literal strings

In this example, the condition is looking for a specific museum code ‘ABC’. Note the use of ‘==’ rather than ‘=’. This is because ‘==’ is required to set / compare a value. You can use ‘!=’ to mean ‘not equal to’. Conditional formatting can use the IIF() function where you have a condition following by the action when the condition is satisfied and then by the action when it is not. Thus: if the condition is true, print the first item, if not true, print the second item. In this example, both items are literal strings in quotes – however they could also be variables.

Museum code: (IIF(RdeCollectionEventRecord.MuseumCode == "ABC", "ABC", "Not ABC"))

Text field – example printing variables

In this example, if the museum code is ‘ABC’, it prints the collector name + number. If not ‘ABC’, it prints the species name.

{IIF(RdeCollectionEventRecord.MuseumCode == "ABC", RdeCollectionEventRecord.Collectors + ' ' + RdeCollectionEventRecord.FieldNumber, RdeCollectionEventRecord.CalcFullName)}

Text field – ternary example

The type category is conditionally printed followed by some HTML to create a line break. The condition is that the TypeCategory != "" (i.e. is not blank). Ternary conditions use a ‘?’ which equates to ‘then’ and a colon which equates to ‘Otherwise.

{DetHistory.Specimen.TypeCategory != "" ? DetHistory.Specimen.TypeCategory + "
" : ""}
Numeric field

In this example, the number 3 is not enclosed in quotes as it is not text. Note that ‘==’ is used as above. This example does not use `IIF()`, rather a construct known as a Ternary Operator: `variable = Expression1 ? Expression2 : Expression3` which is a shorter code expression.

Month name is: `((RdeCollectionEventRecord.CollectionMonth == 3) ? "March" : "Not March")`

Numeric field with decimals

This example also show how to control the number of printed decimal places. “N6” would restrict to 6 places.

Boolean field

When using yes/no fields, you can use the format as below. This example is based on a custom field named ‘IsNative’.

Boolean example: `{(RdeCollectionEventRecord.IsNative == true) ? "Native" : "Not Native"}`

Adding calculated columns

Introduction

There may be cases where you want to add calculated fields to your report. Calculated fields can be added to your report templates – these fields do not exist in your database or RDE tables, rather they are only represented in the report template. A calculated field will have an associated expression which calculates a numeric or text value based on other data values in your table. Simple or complex calculated field expressions can be prepared using language similar to C#.

The example used here is to convert the decimal latitude and longitude values in an RDE file into a readable text string showing degrees, minutes and seconds. However, bear in mind that you can use your own calculated field(s) in any table for many different purposes.

Adding calculated fields

In the open report template, with the **Dictionary** tab and the relevant data table selected (in this RDE example, `RdeCollectionEventRecord`), right-click on any data field and select the option ‘**New Calculated Column**’.
Giving the new column a name and adding the expression

When adding a calculated column, you provide the physical field name and can also give a different alias name. The alias name defaults to be the same as the field name. The expression can refer to one or more fields in your table including other calculated fields. Example expressions are provided below.

Adding expressions to calculated fields – an example

While not for everyone, those with (or with access to someone with) programming skills will be able to take full advantage of adding simple or complex expressions. Note that expressions may include conditional clauses.

In this example, a calculated field called ‘LatDegree’ is added with an expression to hold the degree value of the field Latitude. The expression used is: \((\text{int})\text{Floor}(\text{Abs(RdeCollectionEventRecord.Latitude}))\). The expressions use functions that are taken form the report function list which in turn are based on C# functions. The ‘Int’ in this case is a ‘cast’ which is a standard programming method (in e.g. C#) to convert formats, in this case to a simple integer value.
This calculated field called LatDMS is used to hold the final calculation to display in the report.

Calculate a map reference DMS text string from a DD value

Using the procedures explained above, here in an RDE file, you can convert RDE file Decimal Degree values such as 51.333333 -117.583333 to the text string such as 51° 19' 59" N 117° 34' 59" W

Inserting an example into your own report template

Below, you can find field and expression text taken from a completed report XML template. Rather than adding your own calc fields and writing your own expressions, you can copy this example text and add it to your own report — and use this example to see how it works.

By doing so, it will add all the required calculated fields and expressions to your RDE report template. It looks nightmarish... but this is code generated by the reporter and you can easily copy it your own RDE specimen report template. Here are the steps to take. (NB. this assumes you have already created an RDE specimen report).

1. Open your RDE specimen file and then open the main Reporter.
2. Use the Export option to export the report to a saved .mrt file.
3. Locate the mrt file and open it using a basic text editor such as notepad or notepad++. You will see that report templates are stored in XML format as shown below:

4. Locate the start of the RdeCollectionEventRecord Columns section as shown above. Go to the bottom of this section

Here the last entry in the column section is for the VernacularName. This is followed by the closing tag ‘</Columns>’.
5. The next task is to copy and paste in all the column values as listed below. These should be pasted in just above the closing </Columns> tag.
6. Save the text file in your editor. This will update your exported .mrt report file.
7. Return to the Report option in RDE and then use the import option to import your updated mrt file. You will be asked to provide a new report name.
8. If you now edit the new report and open the dictionary, you will see all the new calculated fields with their expressions.
Displaying the new calculated field(s) in your report

You will not necessarily want to display all the newly added calculated fields. In the example given, most of the fields have been added to simply the calculation, storing the intermediate values in their own fields. For example, there are separate fields to store the calculated values for latitude degrees, minutes, seconds, microseconds and orientation (N or S). While you may want to print these values in your report, it is more likely that you would add the final assembled calculation for latitude which is added to LatDMS. All these repeated for longitude calculations.

In this example, the new fields you will normally want to display in your report design are LatDMS and LonDMS. As with any other fields, these 2 fields can be added as expressions `{RdeCollectionEventRecord.LatDMS}` and `{RdeCollectionEventRecord.LonDMS}`. You may combine these in a single report expression separated by one or more spaces - thus leading to an output such as: `51° 19’ 59” N 117° 34’ 59” W`

Calculated field column values to copy into your RDE report

Refer to the instructions above.

Refer to the instructions above.

```csharp
<value>LatNS, LatNS, System.String, RdeCollectionEventRecord.Latitude = null

0&0 \_:_\_RdeCollectionEventRecord.Latitude <0
0\_0D\_RdeCollectionEventRecord.LatDegrees
0\_0D\_RdeCollectionEventRecord.LatMinutes
0\_0D\_RdeCollectionEventRecord.LatSeconds
0\_0D\_RdeCollectionEventRecord.LatNS</value>

<value>LonEW, LonEW, System.String, RdeCollectionEventRecord.Longitude = null

0&0 \_:_\_RdeCollectionEventRecord.Longitude <0
0\_0D\_RdeCollectionEventRecord.LonDegrees
0\_0D\_RdeCollectionEventRecord.LonMinutes
0\_0D\_RdeCollectionEventRecord.LonSeconds
0\_0D\_RdeCollectionEventRecord.LonEW</value>

<value>LatDegrees, LatDegrees, System.Int32, (int)Floor((Abs(RdeCollectionEventRecord.Latitude) - RdeCollectionEventRecord.LatDegrees) * 60)</value>

<value>LonDegrees, LonDegrees, System.Int32, (int)Floor((Abs(RdeCollectionEventRecord.Longitude) - RdeCollectionEventRecord.LonDegrees) * 60)</value>

<value>LatSeconds, LatSeconds, System.Int32, (int)_3600m(Abs(RdeCollectionEventRecord.Latitude) - RdeCollectionEventRecord.LatDegrees - RdeCollectionEventRecord.LatMinutes / 60m - RdeCollectionEventRecord.LatSeconds * 3600m)</value>

<value>LonSeconds, LonSeconds, System.Int32, (int)_3600m(Abs(RdeCollectionEventRecord.Longitude) - RdeCollectionEventRecord.LonDegrees - RdeCollectionEventRecord.LonMinutes / 60m - RdeCollectionEventRecord.LonSeconds * 3600m)</value>

<value>LatMilliseconds, LatMilliseconds, System.Int32, (int)_1000m(Abs(RdeCollectionEventRecord.Latitude) - RdeCollectionEventRecord.LatDegrees - RdeCollectionEventRecord.LatMinutes / 60m - RdeCollectionEventRecord.LatSeconds * 3600m - RdeCollectionEventRecord.LatNS) / 3600m</value>

<value>LonMilliseconds, LonMilliseconds, System.Int32, (int)_1000m(Abs(RdeCollectionEventRecord.Longitude) - RdeCollectionEventRecord.LonDegrees - RdeCollectionEventRecord.LonMinutes / 60m - RdeCollectionEventRecord.LonSeconds * 3600m - RdeCollectionEventRecord.LonEW) / 3600m</value>

<value>LatDMS, LatDMS, System.String, RdeCollectionEventRecord.LatNS = "0\_0D\_RdeCollectionEventRecord.LatDegrees \_:_\_RdeCollectionEventRecord.LatMinutes \_:_\_RdeCollectionEventRecord.LatSeconds \_:_\_RdeCollectionEventRecord.LatNS"</value>

<value>LonDMS, LonDMS, System.String, RdeCollectionEventRecord.LonDMS = "0\_0D\_RdeCollectionEventRecord.LonDegrees \_:_\_RdeCollectionEventRecord.LonMinutes \_:_\_RdeCollectionEventRecord.LonSeconds \_:_\_RdeCollectionEventRecord.LonEW"</value>
```
Preparing a species list with page set up and conditional formatting

This example is based on the sample conifer database as it has Red List data (IUCN codes). But you may use another database as appropriate. Or replace the IUCN field with another as suits.

Tagging records for your report

The reporter is opened from any data grid using the Reports option on the Data Tools toolbar.

Be sure to tag records to report on before you select Reports. If you want to report on all records in the current file, you must tag all the records.

- On the main menu, select Taxa > Species then use Tag > Clear Current Grid Tags.
- Apply a filter to show only names where Taxon Status is Accepted. The easiest way is to click on the word Accepted in the Tax Status field and then on Selection on the Data Tools toolbar. You can choose a different filter if appropriate.
- Now select Tag > Tag all (you can use any character).
- Finally, for this first stage, select Reports to open the report.

The report designer is now open and ready to use.

Report bands

Report bands, central to report production, are like containers, each with a different function. Examples bands are Page Header and Footer bands (similar to Word Document headers and footers); The Title band which is
printed once at the start of a report; Header and Footer bands which are associated with your Data band (an example use is to print table report column headers); Group Headers and Footers (an example use is to print a Family name at the start of a list of taxa in that family); and the Data band which will output data for each row in your BRAHMS data grid. There are other bands but these are the key ones. As well as adding content to bands, they are highly configurable with formatting features.

Adding a title band

As a first step with the report design, add a title band with some text. All the band options are listed down the left side of the blank report screen. The title band icon is show below.

If you hover over this icon, the tooltip text explains its function.

- Click once on the icon and then click on the report surface – or drag the icon onto the surface.

Either way, you should see the Title band added to your report, and extended to the full-page width. If you wanted to delete the band, selected it and press the Delete key. By default, the band will fix itself to the top of the report. You can increase the band height by dragging the lower edge of the band down or by editing its properties.

You can refer to and edit the properties of this band by clicking on it then choosing the Properties option on the lower right side of the designer. A Right-Click on the band provides further options including access to its Properties. For example, the properties can be used to format the band background with a gradient colour fill.

To add text to this band, you must add a text box component using the Text icon.

- Again, click or drag this icon and create a text area in the title band. You can create the text area anywhere on the report surface then later, drag it to the Title band.

When you add the text box, this auto-open the text expression editing tool. You can type the required text into the Expression area and save using OK.

Click or drag the Text icon to create text box inside the Title band and add a report title.

Clearly, there are a few tricks to learn here. Once added, you can re-open the text editor by Double-clicking the text box.

Formatting options for the text box itself, and the text it includes, are found on the Home menu, the Layout menu and/or in the Properties options for the text box. For example, to centre the text box in the title band, use Layout > Align > Centre horizontally. But to centre the text within the text box, use the Home > Alignment options.
Add an image to the Title Band

To add an image or logo to the Title Band, select the Image toolbar option on the left list of icons and click in the title band. The image can be positioned and re-sized. In the image properties options listed on the right pane, select the AspectRatio to ensure the image keeps the correct shape if re-sized. Also, you will need to select Stretch to ensure the image is re-scaled to fit the size you choose for the report.

Title moved to side with the font edited and an image added to the Title Band. Adjust the properties as suggested above.

Saving the report

At this stage, it will be best to save your report design work. Use File > Save, choose any folder and give your report template a name. You could at this close and then re-open the report to continue editing. To open a saved report, choose File and you will see your recent reports or be able to browse to locate them. Unlike with v7, there is no central reports manager file. Report files can be exchanged with other users.

Adding page numbering

In this example, you can add page numbering to a page footer - similar to a Word Document footer. You could equally add to a page header.

Click on the left margin Page Footer icon then click on the report surface (or drag the icon as above). The footer ban will by default auto-locate to the bottom of the design surface page. NB. you may need to scroll down to see this.

The page footer band is different to a data summary footer. Scroll down to see the added band.

As with the Title band, the properties of the Page Footer band are highly configurable.

To add the page number using the format ‘page of total pages’:

- Select the Dictionary option on the left panel and choose System Variables. Here locate the entry PageNofM.
- Drag this variable onto your Page Footer band. It will be added into a text box feature.
- Use the various formatting tools to align the text and set the font features. Ensure the text box width is enough to show the text.

If you Double-click the text box to open the text editor – and then choose Expression, you will see that the variable PageNofM is enclosed in braces as in {PageNofM}.

In this example Page Footer, the line tool has been used to add a horizontal line below a further text box and the page numbering. The items are positioned appropriately and the colour and font adjusted. Some experimentation is needed.

Save your report design before proceeding.
Adding the data band

The data band is the most important band as this is the link between your data and the report. This band can be added in two ways, either using the data band icon on the left side or by using another approach from the Data Dictionary. Here, the latter option is used.

- Select the Dictionary tab. Here you will see the current BRAHMS data table listed.
- Drag the Species table icon onto the report surface (not the yellow Species container icon above it).
- As you drop this onto the report surface, a dialogue opens offering the chance to select which fields to include. At this stage, only select the 3 fields: CalcFullName, IUCN and ProtologueCitation. There are other ways to add data fields to the data band but this is a convenient method for now.
- Adjust the field order using the arrows provided to move the ProtologueCitation above IUCN.

When adding the Data Band, you can also select the fields to include. The selected fields can be adjusted later if necessary.

The properties of the Data Band can be adjusted as with the others. To do this, ensure you click on the Data Band itself rather than either of the text boxes within it. Then choose the Properties tab. There are numerous properties for data bands but at this stage, it’s not necessary to alter these unless you wish to experiment. If you click on either of the text boxes within the Data Band, you can then set the properties of each text box, for example the font.

By default, each field is given equal space. This can be adjusted to give the species name a lot more space than the 2 letter IUCN code. You can drag the field edges to re-size or use the properties options to set the widths.

Here, the field widths have been adjusted. Also, the text for IUCN has been adjusted right using the align tool.

By double-clicking on the IUCN field, it becomes possible to add literal text to the expression. In this example, the expression {Species.Iucn} has been enclosed in square brackets [{Species__Tagged__.Iucn}] which will print e.g. [VU]. NB Be sure to add any text outside the { }.

However, the square brackets need to be suppressed if there is no IUCN Red List value. Otherwise you will end up with the ugly [] appearing in your report. This can be achieved by adding the following syntax to the expression (You can copy the full expression and paste this into your report):

[Species.Iucn]
The handy IIF function is used to control what is printed. Looking more closely at \(\text{IIF(Species.Iucn != '', '[', ''])} \),

this translates to ... if the \(\text{Species.Iucn} \) field is not blank ('!=' means not = to), then print ‘[’ otherwise print ‘’). Thus here, the function is used twice for the [and the] brackets.

The height of the data band controls line spacing in your report. The width of the individual text boxes can be adjusted.

Save your report design before proceeding.

Also see: https://forum.stimulsoft.com/viewtopic.php?t=3825

Other format examples:

\(\text{IIF((registrant_data.phone_number == null), '', registrant_data.phone_number)} \)

\(\text{IIF((registrant_data.primary_name == registrant_data.participant_name), '', registrant_data.primary_name)} \)

Adding a Group Header

Group header bands are used to group data by one of more fields. In this report, it will be useful to group the data by family name. To add a data grouping header:

- Click once on the **Group Header** icon and then click on the report surface – or drag the icon onto the surface.
- If the newly added band is below the Data Band, drag the band up and release it above the Data Band.

You now need to assign a what is termed a ‘condition’ (in this case a data field) to the **Group Header** band and also, add the data field to include in the report.

- Firstly, to add the group ‘condition’, double-click on the band to open the data source (in the case the species table) and choose the field **FamilyName**. You will then see this added as a ‘condition’ in the band header. When you add a text condition, the default sort for he grouping is AZ Ascending.
- Secondly, add a text box to the group header band. Double-click this, choose a Data Column and add the **FamilyName**.

The Group Header Band showing the Condition Species.FamilyName and with the FamilyName added to a text box as a printable field. The family name font and position has been adjusted.

Progress this far
Sorting the data

Separate to the group sorting, the data in the data band will need a sort order added. This can be one or more data fields added to the data band but in this case, the report only has to be sorted by the CalcFullName.

- Double-click on the top of the Data Band (not on one of the text fields it contains).
- Choose the **Sort** option and then choose the field CalcFullName.

The sort option being used with the Data Band.

- Use the Preview option to check your report – and it’s a good idea to Save the report design again.

Adding a condition to the data band

For this report, you could optionally colour the reported records depending on the Red List values, for example, printing the CR, VU and EN categories taxa in different colours. To do this, it is necessary to add one or more Data Band ‘conditions’. Conditions can be used in a wide variety of ways –this example sets a row highlighting condition.

- Click on the Data Band header to select this. Take care to select the band rather than one of the fields it contains. Then select the **Conditions** option on the toolbar.
- Select Add a condition choosing the **Highlight Condition** option.
- Set the **Column** value to Species_Tagged_Iucn

Three highlight conditions added to the field Species_Tagged_Iucn

Adding a border box around the data band

If you now select the Rectangle option on the left side toolbar, you can carefully position and size a rectangle with the required line style and colour to fit around the data band items.

Detail showing the red dotted rectangle. This was set to red for this screen but edited back to a light grey colour.
Combining text with date fields

Here is an example of how you can combine literal text with datetime fields,

Date Record Created: {LivingCollection.AddedOn.ToString("dd/MM/yyyy")} Date Last Modified: {LivingCollection.LastModifiedOn.ToString("dd/MM/yyyy")}

To achieve: Date Record Created: 10/01/2020 Date Last Modified: 05/03/2020

How to upper case a data value

To upper case a data value, use the function ToUpperCase() as in the example here:

{ToUpperCase(LivingCollection.FamilyName)}

Print report or save to a document

In Preview mode, you can choose the required output, either printing directly or saving the report to one of several file formats including Word and Excel. One advantage of saving to a document is that the report can be further edited prior to final printing.
Designing a specimen label

Following on from the previous section on creating a list report, creating a label report template introduces a few new aspects to report design. This example assumes you have mastered the basic of opening the reporter and creating report bands. Unlike the list report above, this report template will only have a Data Band. The Title, Page Header and Group bands are not needed. Designing labels introduces the use of page columns, the ability to combine fields in expressions, the use of HTML tags, conditional clauses and the use of calculated fields.

The example here reviews label production in the main specimen table. You can design a label in an RDE file using the same steps but the field names will change to an RDE prefix. You cannot design a single label template for both RDE and the main specimen tables.

Tagging the records for your labels

To create labels for preserved specimens, you have to open the main specimen table and tag the appropriate records. As introduced in the previous section, the reporter is opened using the Reports option on the Data Tools toolbar.

- On the main menu, select Collections and select the category Preserved specimens. Now open the main Specimens table. Use Tag > Clear Current Grid Tags and then tag the records to produce labels for.

Create the report template page layout

- Select Reports to open the report.

Assuming you wish to print labels in two columns:

- Select Page > Columns and set the value to 2. This would also be the time to set the paper size if necessary.
- In the lower left pane, select the Dictionary tab and drag the Specimen table icon (not the yellow drum) to your report design surface. By default, this will position itself at the top of the left column.
- When you drag the specimen data source, you will be offered the chance to select fields. For this report, do not select any fields at this stage.
- Drag the Data Band down to increase its height. The precise height can be adjusted later to obtain e.g. 6 labels per page. To help visualize the layout, add a rectangle to the report using the rectangle icon on the left side. Size this to almost fill the data band area.

Here, the report page (left) has 2 columns, a Data Band has been added for the Specimen data source. A rectangle has been added to provide a visual reference. This rectangle may be removed later. The Preview (right) at this stage displays the rectangle layout.
Adding text for the top of the label

Assuming you want to include some text to the top of the label, perhaps “Flora of” or your herbarium name, follow these steps:

- Click or drag the Text icon onto the Data Band. You can now edit the contents of the text box and set properties such as font, text size, alignment and colour.
- To edit the content of the text box, double-click the Text Box or click on the Text Box then select the Text button at the top of the Properties options.
- Use the Home menu options to set font, size and other basic features.

The text is centrally aligned within the text box and the text box itself is centred horizontally using the Layout menu option.

Adding data fields

The label design starts by looking at taxa names which present the most complex part of the label design.

The easiest way to add a data field is to select the Dictionary tab in the lower left pane, expand the Specimen options, and then to drag the required field to the design area. This process adds the data field within a text box. The alternative is to add a text box and then insert the data field. This is possible, but there are more steps to take.

- Drag the field FamilyName from the dictionary to the label surface. Adjust the position of the text box and set the various properties as required. You will want to set the font to about 10 point. Make sure the text is adjusted left.

The start of the label template with the family name added. Note that the final positioning can be done towards the end of the design process.

Combining field names in a text box

Some elements printed on labels require that data from more than one field is combined into a single text box expression. For example, genus + species + author. Multiple fields can be added to the same text box to create:

(Specimen.GenusName)(Specimen.SpeciesName)(Specimen.SpeciesAuthor)

- Drag the first field name (GenusName) on to the report design. This will create the initial text box. Then drag the fields SpeciesName and SpeciesAuthor to the same text box. The reporter will prompt how to append these fields with a series of positioning icons – choose the one with the small red hatched box to the right of the black hatched box – this adds the field to the last added field.
- Once these 3 fields have been added, double click the text box and then choose the Expression options.
The reporter will auto-trim these fields, removing trailing spaces between the fields. However, you must add a
single space as in: {Specimen.GenusName} {Specimen.SpeciesName} {Specimen.SpeciesAuthor} . Although you can add
this now to learn and test, this string will be replaced with a more complex one given below.

Using HTML tags
In order to print the species name with possible infra-specific names together with
authors, part in italic font, part not, it’s possible to add some simple HTML mark-up
tags. The ability to add these tags opens up options for setting multiple font settings
within a single expression. The available tags are listed below the dictionary entries.
HTML tags can be manually added to your expression.
The tags are always enclosed in angle brackets <> and they are placed outside the {}
braces. There must always be an opening and closing tag. Thus, using the italics tags <i> and </i>, you can add:
<i>{Specimen.GenusName} {Specimen.SpeciesName}</i> {Specimen.SpeciesAuthor} This will print the genus and

species names in italic font but not the author name.
If you are using HTML tags, you must ensure the text box property AllowHtmlTags is selected.

Using conditional clauses to print the full taxa name
When printing species names with infra-specific elements and/or cultivar names, it is necessary to add some
conditional clauses. For example, if there is a subspecies name, you will want to print the text ‘subsp.’ or ‘ssp.’
before the name - but not if the name is blank. For cultivars, you will want to add quotation marks.
One way to apply conditional clauses is to use the IIF() function. This function evaluates a Condition, and if the
Condition returns true, the expression will return Value1. If it returns false, it will return Value2. The syntax !=
in programming means ‘not equal to’. Note also that all programmatic components are enclosed in { }.
IIF(condition, return value if true, return value if false)
An example: {IIF(Specimen.Subspecies != "", "ssp.", "")}
Here, if the field Specimen.Subspecies is not equal to blank, it returns “ssp.”, otherwise it returns an empty
string. Using this, you can now develop the complete expression for all possible species epithets as follows:

Specimen table
<i>{Specimen.GenusName} </i>
<i>{Specimen.SpeciesName}</i>
{Specimen.SpeciesAuthorName}
{IIF(Specimen.Subspecies != "", "ssp.", "")}
<i>{Specimen.Subspecies}</i>
{Specimen.SubspeciesAuthorName}
{IIF(Specimen.Variety != "", "var.", "")}
<i>{Specimen.Variety}</i>
{Specimen.VarietyAuthorName}
{IIF(Specimen.Forma != "", "f.", "")}
<i>{Specimen.Forma}</i>
{Specimen.FormaAuthorName}
{IIF(Specimen.Cultivar != "", "'", "")}
{Specimen.Cultivar}{IIF(Specimen.Cultivar != "", "'", "")}
{Specimen.CultivarAuthorName}

Collection event table
<i>{CollectionEvent.GenusName} </i>
<i>{CollectionEvent.SpeciesName}</i>
{CollectionEvent.SpeciesAuthorName}
{IIF(CollectionEvent.Subspecies != "", "ssp.", "")}
<i>{CollectionEvent.Subspecies}</i>
{CollectionEvent.SubspeciesAuthorName}
{IIF(CollectionEvent.Variety != "", "var.", "")}
<i>{CollectionEvent.Variety}</i>
{CollectionEvent.VarietyAuthorName}
{IIF(CollectionEvent.Forma != "", "f.", "")}
<i>{CollectionEvent.Forma}</i>
{CollectionEvent.FormaAuthorName}
{IIF(CollectionEvent.Cultivar != "", "'", "")}
{CollectionEvent.Cultivar}{IIF(CollectionEvent.Cultivar != "", "'", "")}
{CollectionEvent.CultivarAuthorName}

Using this expression avoids printing ssp. or var. or f. when there are no names of these ranks. You can replace
“ssp.” with “subsp.” or as required. Also, the function encloses cultivar names in single quote marks. Cultivar
names are not printed in italic.
BRAHMS v8 introduction and guide

187 | P a g e


It looks complex – but in any case, you can simply copy this entire expression to the species name text box in your report – replacing the `{Specimen.GenusName} {Specimen.SpeciesName} {Specimen.SpeciesAuthor}` that you added above.

The text box area can be sized appropriately later – it does not have to be large enough to see the entire expression in design – only on display. If your HTML tags are not correct, make sure the text box property `AllowHtmlTags` is selected.

Adding geographic data and other notes fields

Geographic data can be added field by field (Country, MajorAdminName, MinorAdminName etc.) allowing you to format the data exactly as you wish. Alternatively, take advantage of the calculated field `CalcFullGazetteerText`. This calc field includes all fields from country to place name with locality notes, pre-formatted. It does not include the map reference.

- Using the same methods as above, drag `CalcFullGazetteerText` from the specimen dictionary list to the design surface.
- Size the text box to be large enough (height) to include the longest text you will encounter.
- Important - select the property `WordWrap` (under Text Options).

NB. To print fixed size labels and thus, a constant number per page, easy to guillotine, the text box should be sized deep enough to fit the longest text you expect for the field. The alternative is to size the text box for e.g. one line – and set the property `CanGrow` to true. However, if you opt for CanGrow, the labels will most likely not be equal size in the columns. `WordWrap` is important though, otherwise, text over one line will not be visible.

You can combine `CalcFullGazetteerText` and `CalcLatLongText` in a single text box adding the HTML tag `
` between these to create a new line.

```
{Specimen.CalcFullGazetteerText}<br>{Specimen.CalcLatLongText}
```

Some example output including the taxa and geodata.

Further items could be added to the same text box as used for the geographic data including text notes for habitat and the specimen description.
The way you decide to arrange this will depend on personal preference. You may wish to include line breaks with \texttt{
 } or just spaces between items. Remember, if you are using HTML tags, you must ensure \texttt{AllowHtmlTags} is selected in the Properties. Some trial and error testing will be needed to get the correct text box sizes and fonts.

\textit{An example of greater control when not using a calculated field}\texttt{}\texttt{}\texttt{}

While calculated fields provide a simple way to report on some field combinations, you will always have greater formatting control by using the individual fields. An example is reporting of gazetteer data.

The \texttt{CalcGazetteerSummary} field (= \#Gazetter Summary in the data grid) is a concatenation of country name, major area, minor area, locality name and locality notes. By adding the expression \texttt{\{Specimen.CalcGazetteerSummary\}} to your report, all these fields will be added. However, you have no control over the formatting within this text string.

On the other hand, you could fully control these data by adding the separate fields with conditional clauses, case adjustment and HTML tags as shown below:

In this example, the country and Locality names are forced to upper case; the country is in bold text and notes are in italic text. Conditional clauses control the printing of commas. Note that you set the Allow HTML under Text Additional properties to use the above correctly.

\textit{Adding collector name(s), field number and date}\texttt{}\texttt{}\texttt{}

In this example, the collectors and field number are added to a shared text box. Drag the field \texttt{PrincipalCollector} and \texttt{FieldNumber} from the dictionary to the label surface to create a single text box. To do this:

- Open the data dictionary on the left side and expand the Specimen Data Source. Drag the \texttt{PrincipalCollector} field to the design surface and roughly position and resize the text box.
- Now drag the \texttt{FieldNumber} on top of this text box. A red box appears and a small form opens to request if and how you wish the fields to be joined in the text box. Choose the option with the small red shape to the right of the grey shape.

\begin{itemize}
 \item By editing the properties of the text box expression, you can now add a space between these fields and optionally add a text string such as \texttt{’No. ’}.
 \item Finally, drag the field \texttt{CalcLongCollectionDate} to a new text box. Position this to the right. You may want to right align the text.
\end{itemize}
Adding barcodes

You can add a wide range of barcode types and control how these are displayed.

Use Insert > Barcode to add the barcode expression, choosing the setting as required.
Adding dates in RDE and main tables

To add a readable date in RDE specimen files, you can use the expression which is based on the separate numeric day, month and year fields:

Date: {RdeCollectionEventRecord.CollectionDay} {DateSerial(2020, RdeCollectionEventRecord.CollectionMonth, 1).ToString("MMMM")} {RdeCollectionEventRecord.CollectionYear}

This expression would print e.g. ‘12 January 2021’

In the main tables, you could use a similar expression [replace the table ‘RdeCollectionEventRecord’ with ‘CollectionEventRecord’. However, you also have access to two calculated date field formats # Collection Date (Long) and # Collection Date (Short).

Designing a label for plant tags

The example here provides some tips on how to create a 3 x 1.5 inch label tag for plants. Clearly, you can adjust the label dimensions and precise content to suit. This example here is based on the barcoded plant ID tags used by the Marie Selby Botanical Gardens in Sarasota, Florida for labelling their living collections.

The labels are produced for all tagged records in the main plants table in BRAHMS.

The challenge is to create a label width 3 x 1.5 inches and to include some fields describing the wild origin.

In your Living collections plant table, after tagging the plant records to print labels for, choose Reports on the main toolbar.
When prompted, select No to the **Restrict report data** and select both options on the **Additional Report Data** form. This will provide you to access to fields that may not be in your current field view and/or may be in the related accession and collection events tables.

It is not that obvious where to set the report dimension units. To set these to inches rather than metric, on the **Properties tab**, choose Report at the top and then choose Inches for the Report Unit as shown above.

Using the Page settings, you can set the page size (= label size) taking care with Margins. If the default margin settings are not edited, especially on rather small labels, you may end up with a very limited design surface.
In this report, the Data Band is created using the LivingCollection data source. Following examples in earlier reports, you need to create a data band by dragging the LivingCollections data source header onto your report surface.

The field expressions used in this report are as follows:

\[
\begin{align*}
&\{\text{LivingCollection.CalcFullName}\} \\
&\{\text{LivingCollection.FamilyName}\} \\
&\{\text{LivingCollection.Accessions.WildOrigins.CountryName}\} \\
&\{\text{IIF(LivingCollection.Accessions.WildOrigins.MajorAdminName} \neq "", ",", ")\}\{\text{LivingCollection.FamilyName}\} \\
&\{\text{IIF(LivingCollection.MaterialCategory} \neq "Restricted", "Restricted Distribution", ")\} \\
\end{align*}
\]

Note that some of these expressions are using the IIF() function for conditional formatting. Also note that some fields are being pulled in from ‘WildOrigins’ (= CollectionEvents).

For the barcode, note that the Code entry is set to the field name to use and that the Label text is shown. However, if you want more control over the positioning and font of the Plant ID, do not tick Show Label Text. Rather, add ‘LivingCollection.PlantId’ as a separate expression on the report.

Finally, if you want to print a box to highlight text such as ‘Restricted Distribution’, one way to do this is as follows: Add an image which in this case is a filled blank rectangle. Then set a Condition in this image as shown below. The text box expression for MaterialCategory as cited above will then be set to a white font colour.

Adding a condition to control when the image is enabled.
Conditional printing of restricted material text. Note the Plant ID here is printed above the barcode.

Another issue to keep an eye on is the Data Band *New Page Before* property. If you have trouble with your labels aligning on the printer, tick this option.

Controlling report output using a numeric count field

Using the report designer, you can add a report template design feature to control how many labels (or other categories of report) are printed per record. For example, you may want to print 3 herbarium labels for one record but only 1 of another.

The print counts can be controlled by using any numeric field available in your database, as long as that field is included in the report data. As it happens, the Collection Events table has a standard field for this which is named ‘Labelcount’ – but you could equally use another numeric field including a custom field.

In the above example provided by SANBI, South Africa, the record with field number 112 has been printed 3 times and that with field number 15395 has been printed once.
Overall label design view

The above design screen shows the overall layout of the printed sample above. The actual label content is not important here. The features that are required to produce multiple labels per record are as follows:

1. A second data band (DataBand2) is added as is assigned the correct Data Source. In this example, ‘DetHistory’.
2. The first data band (DataBand1), which includes the actual label design expressions, has no Data Source assigned. However, this first data band is assigned a ‘Master Component’ which is DataBand2. This is assigned by double-clicking on the DataBand1 header and choosing the option Master Component.
3. In the ‘Before Print’ event of DataBand1, add the text ‘DataBand1.CountData=DetHistory.Specimen.CollectionEvent.LabelTotal’ where LabelCount is the field control the print number. In this example, the labelcount is coming from the table CollectionEvent – but in a hierarchy from DetHistory and Specimens. The Before Print event is found by clicking on the DataBand1 header, selecting Properties and then selecting the Event Properties icon as shown below:

Preparing a transaction list

This example shows in summary how to produce a transaction packing list for loans, exchanges and similar. Transaction reports use the same techniques as the previous examples. One difference is that they refer to two separate data sources – the transaction record itself and the linked specimens. This requires the addition of two data bands.
Creating a report using Master Detail

Introduction

There are often times when you need to report using Parent-Child relationships between tables. This is where one table has 1:n (many) child records, one obvious example being the Genus -> Species relationship. Other examples would be:

- Collection Events -> Specimens -> Determinations
- Living Accessions -> Plants -> Plant Events/Requests

Another example of a report that offers multiple tables is with Seed Accessions:
Seed Accessions have several related tables - data from these can be incorporated into your reports.

When to use Group Headers

Where the data are provided in a single table, you can use report grouping. For example, the species table, as provided to the reporter, includes the family, genus and species names. Using the reporter Group Header options, you could easily print the family and genus names once only as in the following example:

Group Headers can easily be used to group data. The group data bands can include multiple fields as required. In this example, only the family and genus names themselves are added.

Data in separate tables

However, where the data are supplied to the reporter in separate, related tables, you can use the Master Detail options to better control your output. As an example, you have species with 1:n text descriptions per species and each description may have 1:n references. Using these data, you may want a report that includes Species -> Text Descriptions -> Literature references. And perhaps, to group the report by family. Some species may have no text descriptions and not all your text descriptions may have literature references.

Report – example output

The following report example explains how to create your report using the reporter Master Detail facilities with species names, species text and species text references. Bear in mind, the same procedure can be used for any parent-child tables where those tables are available in the report dictionary options.
Araucariaceae

Araucaria araucana

Description

Dioecious or more rarely monoecious trees to 50 m tall, to 2.5 m d.b.h.; trunk straight. Bark to 15 cm thick, rough and deeply fissured, exfoliating in small chips and plates; inner bark brown, outer bark grey or grey-brown. Crown in mature trees regularly domed or more or less flat-topped, with branches only at the top of the tree, branching according to Rauh’s model. Primary first order branches of mature trees in pseudo-whorls of 8-10 or sometimes more, up to 3 m long, spreading or assuregment, mostly with second to third order branches, caducous. Adventitious foliage branches common, but usually associated with damage, showing a tendency to produce secondary branches. Foliate branches spreading or ascending on primary branches, of unequal length up to 1 m or more. 8-84 mm scale (including leaves), of regular width from base to apex, rigid lower foliage branches sometimes subumbrelliform. Adult leaves variously spreading or almost erect, with a decurrent, reflexed base merging with bark, ovate to lanceolate, 2.5-6 x 1-3 cm, varying little in length and width on a single branch, fall or slightly concave adaxially, ca. 1 mm thick, rigid and coriaceous, margins entire: surface smooth or slightly lustrous. Smallment, glaucous, becoming elongated and curved down at anthesis, 8-10 cm + 40-50 mm. Micropylory inconspicuous, spreading at ca. 60° from a 10 mm thick neck, stalk fine and weedy, ca. 10 mm long, straight or slightly curved; dense 10-20 mm long, 4-9 mm wide at the thickened and curved base, external margins dentate, apex acuminate, recurved, abaxial surface slightly rugose. Pollen sacs 10-13 lineae, ca. 15 mm long, slightly packed. Seed cones axillary on very short foliage branches which widen below cone, usually solitary; erect, immature cones ovate, 8-80 cm long, deciduous covered with recurred bract base, green, maturing in 23-24 months. Mature cones dull brown, subglobose to globose, 45-50 cm thick, (green weight 3-4 kg). Seeds ovate-oblong to obovate, more or less angular, 4.6 x 1.5-2 cm including vestigial wings if present, distally thickened to a more or less triangular, transversely keeled pyriform, ending in a long-caudate, curved, 2.5 cm long tip. Seed scales not wider than the seed; wing fragile, ca. 2 mm long, sometimes absent. Seeds weighing: conicol, 3.6 x 1.5-1.5 cm, not flattened, smooth, matt tawny-brown when ripe.

In this report sample, three categories of text are printed per species. One text description has 2 references, another has none.

Designing your report template

Overall design layout

The above screen shows the report template design. The layout is explained in the following sections.

Family name

The report starts with a Group Header Band. This band is not related to the Master Detail component of this report but is added as an extra here. Group Header bands are a useful way to group your data by one or more fields. In this example, the family name will be printed once only. The ‘condition’ of this group header band is
the family name. As the family name is available in the species table, the condition is Species.FamilyName. Note that the content of the band must also be added in a text box and in this case, the content prints the family name. The height of the band and the position of the text box within it are set to provide the report spacing.

Species name
Next in this example comes the species name. This is a standard data band with Data Source set to Species. The band includes a single text box to print the species name using the calculated HTML field. The species band itself has no Master Detail setting. Note the text box property Text Additional > Allow HTML text for the field CalcHtmlName is set to true.

Print if detail empty
This is an important property to set if you want to print a parent record when any child records are missing. For example, print the species record even if it has no text references. This property can be found in the Behaviour properties of the relevant data band. In some cases, you may want to exclude records that have no data for the related child table – in which case do not select this option. Note: this setting needs to be edited for any data band that has child records.

Species text band
A second data band is now added to print the species descriptive texts. This band includes two text boxes: TextTitle and TaxonText. These have been kept in separate text boxes to provide an easier way to control their fonts.

By double-clicking on the new data band header, it becomes possible to add three important settings:

Master Component
The first step is to select Master Component and to choose the correct parent table.

Relation

In this example, you would choose the DataSpecies data element.
The next step is to set a relation between the text descriptions and the species table. By **double-clicking** on the band header again (assuming it is closed), select Relation and choose the parent species table, here DataSpecies.

![Image of relation settings]

A relation is set between this data band and the species table.

Optional Filters

The next optional step is to set any required filters. By **double-clicking** on the band header again (assuming it is closed), select Filter and add any filter expressions as shown below. Note that the option **Filter on** is selected and that **Filter mode** is set to ‘Or’ rather than ‘And’.

![Image of filter settings]

In the above filter example, the ‘or’ filters are added to print text descriptions for three TextTitle values. This would be because in this report, the idea is to restrict the text categories in some way.

References data band

A third data band is added to print the references. In this database, these literature references are linked to the taxa descriptions themselves. This band includes a single text box to print the CalcFullReference. Bear in mind that you could include any references fields you wish — and format as required for your report output. As with the above example, the data band properties can be set for the Master Component, Relation and any optional Filters. No filters are used for this band.
In this example, the Master Component is set to DataSpeciesTexts.

The relation is set to SpeciesTexts.
Sorting alphanumeric fields numerically in reports

It is possible to sort alphanumeric fields numerically – assuming those fields include numeric data. An example is given here for the Specimen table field SpecimenAccession.

\{TryParseLong(Specimen.NumericAccession) \? Int64.Parse(Specimen.NumericAccession) : -1\}

To add a function such as this as a sort command, you need to use the *fx option to open the sort function editor.*

To add a sort function, use the *fx option.*
Image management

See examples on https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#images

Introduction

Images can be linked to any record in BRAHMS. You can link multiple images to the same record. Information about your images is listed in the central images table. For example, images could be linked to species, entities, collection events, specimens and living plants. However, you may also consider linking images to people, places, garden locations, other taxa ranks such as families and genera, in the latter two cases, these would be representative images.

The images themselves may be of any image file type – and may be registered in BRAHMS as physical file paths or as URL links. If a registered image cannot be located, the system will be unable to display it. Typically, images are of preserved specimens (insects, herbarium, fossils), illustrations and habit shots such as garden or wild collected plants/animals. But equally, they may be images of maps, people, landscapes, etc.

The links between images and data records in BRAHMS are maintained in a separate table which is not one you can open. This table holds the GUIDs of the image records and the GUIDs of the data records to which the images are linked.

Images can be viewed from the main image table itself file, clearly one image per record, and/or from any other table where records have image links.

Image copyright

Image copyright text can be stored and presented in one of 3 ways:

- A default text for all images can be added under **System > Options**.
- Copyright text can be added to the image table.
- Copyright text is extracted from the IPTC image header if this is available.

The priority is that the IPTC header will be used if available, then the image record data and finally, if neither available, the default copyright text.

A default image copyright can be added for all images – but these settings are overridden if copyright details are added to individual images.
Viewing images

The image viewer is opened from any BRAHMS or RDE table using the Images toolbar option on Data Tools.

If any images are linked to the current record, these will be displayed in the viewer with thumbs in the lower part of the form.

The image viewer has a number of controls below the main image:

Options, left to right:
- Flip image horizontally, Flip image vertically
- Rotate left 90 degrees, Rotate right 90 degrees
- Reset
- Open image in your default image viewer
- Fit content within bounds
- Fill bounds with content

Image viewer function keys:
- Shift + Mouse Wheel: zoom
- Ctrl+ Mouse Wheel: pan
- Alt + Mouse Wheel: drag rectangle to zoom

There is also a zoom/pan image explore option:

The slightly obscure icon bottom right is used to open the View Finder. This provides a zoom/pan image explore option.
Manually linking images

Images can be linked to or unlinked from any record in BRAHMS when using the Image Viewer. As an example, linking images to a species record:

- Select Taxa > Species and then on Data Tools, select Images... to open the Image Viewer.
- Here, you can either use the Link button or drag image(s) to the Image Viewer.

To link images to a record, you can drag the image (or images) from your file manager onto the BRAHMS Image Viewer.

Alternatively, use the Link option at the bottom of the image form. Use Unlink or Unlink all to remove the link(s).
The main image library

The main image table in BRAHMS is opened using **Images > Image Records**. Images themselves are never added to your database, inflating its size. The image table only stores references and meta data about the images.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image file</td>
<td>The file name of the image</td>
</tr>
<tr>
<td>Directory</td>
<td>The folder location of the image file</td>
</tr>
<tr>
<td>Image URL</td>
<td>The full URL of the image</td>
</tr>
<tr>
<td>File Type</td>
<td>The type of image file</td>
</tr>
<tr>
<td>File Size</td>
<td>The image file size</td>
</tr>
<tr>
<td>Image Type</td>
<td>User defined classification of your images (scan, painting, illustration, etc.)</td>
</tr>
<tr>
<td>Image Caption</td>
<td>Free text</td>
</tr>
<tr>
<td>Foto Prefix</td>
<td>Used to further reference an image source</td>
</tr>
<tr>
<td>Foto Number</td>
<td>Used to further reference an image source</td>
</tr>
<tr>
<td>Foto Suffix</td>
<td>Used to further reference an image source</td>
</tr>
<tr>
<td>Priority</td>
<td>Numeric value to indicate image priority within your project</td>
</tr>
<tr>
<td>Image Date</td>
<td>Date image taken</td>
</tr>
<tr>
<td>Copyright</td>
<td>Free text</td>
</tr>
<tr>
<td>Not Online</td>
<td>Yes/No field to optional prevent uploading</td>
</tr>
<tr>
<td>Comments</td>
<td>Free text</td>
</tr>
<tr>
<td>Uploaded to BOL by</td>
<td>Who uploaded image to BRAHMS online</td>
</tr>
<tr>
<td>Uploaded to BOL on</td>
<td>Date image uploaded to BRAHMS online</td>
</tr>
<tr>
<td>Audit fields</td>
<td>Standard fields for who added/modified image record</td>
</tr>
</tbody>
</table>

Image table fields.

Image folders

Image file metadata

Images may have additional information embedded within the image files themselves – data stored in the image header. These data are exposed when you view images directly in the image library.
The image data is likely to include a lot of camera settings but also data such as image date/time, copyright, keywords and GPS data, depending on your camera facilities and settings.

Image location and file names

Images may be located in any location including in media libraries and cloud servers. Images may be referenced in any standard way include UNC paths. Rather than referring to physical file names, you can also refer to URLs. Using URLs implies your images are accessible online. The great advantage is that you will be able to view the images even if you do not have access to server path, for example, you may be using BRAHMS in a different location or country.

It is good planning to think through your image file naming strategy. Avoid using spaces in image file names as these are not easily managed if you are publishing images online. Image file names can use different languages and international character sets.

File names may used any language script.

The following are examples of valid file names and URL paths:

C:\Myimages\00015343.jpg
H:\SharedDrive\Images\00015343.png
\myfilestore\MuseumFiles\InsectImages\AASY00ww4046_12089.jpg
http://medialib.naturalis.nl/file/id/L2436411/format/large

Using image URLs

You can store images as URL references, the advantage being that your images can be viewed from any location.

Images accessed from the Naturalis Museum media library. This BRAHMS database has over 5 million image records.
Importing images and image links from Excel

If you have many images to link to data in BRAHMS, it will be more efficient to use the **Image Import Wizard** tool rather than manually linking the images via the Image Viewer. This tool has been designed to make it as simple as possible to link your images to any record in any BRAHMS table.

To use this option, all you need is an Excel (.xlsx) table that has a column with the image file names (or URLs) and one or more columns that will allow you to match the records to your data records in BRAHMS.

The **Image Import Wizard** tool has two key functions:

a) **to import images and image meta data into BRAHMS**, matching your Excel file image field names with those used in BRAHMS.

b) **To link the images to the appropriate records in the currently opened BRAHMS table**, using your selected record matching criteria.

To open the image import wizard tool, select **Import/Link images** on the **Data Tools** toolbar.

In the top image matching section of the form, you can match your Excel columns with the appropriate image data column(s) – these are the image data that will be imported and linked to matched data records.

As a minimum, the Image File name or a URL is required: If the filename also contains the full directory /folder path there is no requirement to match the folder separately as it will be automatically separated from the filename. All other image fields are optional.

If URL entries are added to the Image File field, these will be treated as URLs and processed accordingly.

Note. The image import can be processed even if the image files are not currently accessible.

In the lower section, you can match your Excel columns to BRAHMS data record columns – this controls which images will be linked to which records.

Ensure the columns selected match the correct records in your database. For example, if you are linking images to specimen records based on the barcode, ensure the Excel file has a column with the barcodes. In the example here, the match is made between the Excel field ‘Plant Name’ and the BRAHMS field # Full Name. Any field or series of fields can be selected.

Note. Make sure any columns you want to use in matching are visible in the grid before using this tool.
Importing images from Excel - examples

Image import example 1

Snapshot of a sample Excel file with demo image details and also a field to use for record matching, in this example “Species name”. Note that the imagefile field includes the full path name of the images. In other cases, file and directory names may be held in separate fields.

In the above example, the user has matched the image fields to be imported. Note that it is not necessary to add the Directory name - in this case, the image file includes the full path. The records are being matched using an excel field called Species name and this has been matched to the BRAHMS field #Full Name.

Image import example 2

The excel file here includes barcodes that can be used to match to records in the BRAHMS specimen table. The other fields such as family, genus, sp1, in this case, need not be used for matching as the barcode is sufficient. The image file and directory names here are held in separate fields.
The selected image and matching settings.

Note that record matching may involve using several fields – you can select any group of fields that you feel will match records correctly. You may have exported data from BRAHMS to Excel including the record GUID – and this on its own would be sufficient.

As the data are imported, the Status is updated. Status options are:

- **Unmatched**: the importer is unable to match the data to a record in the current BRAHMS table. For example, a barcode cannot be located.
- **Matched**: the importer is able to match the data to a record in the current BRAHMS table. However, it is unable to add an image as the image data are not correctly available in the Excel file. Note that the image file itself is not be accessible, this will not stop the import.
- **2 Matched**: (2 or more) the importer has located more than one potential record match and the process cannot proceed.
- **Imported**: the image is successfully added to your image table and the image linked to a data record.
- **Exists**: the image data have already been added and will not be added again.

Importing images from Excel to RDE files

As discussed in the RDE sections, images can be transferred from Excel files to RDE. When transferring RDE files to BRAHMS, the RDE image data are added to the main database.
If your Excel file includes image references as physical file names (path + file name) or URLs, these can be imported to and viewed in the RDE file. If there is more than one image, the entries should be comma or semicolon separated or on different lines.

By default, BRAHMS checks for the fields Imagelist or Images and auto-selects either if they are available. Otherwise, you can select the image field using the field selector provided.

In the above Excel table, the column Imagelist includes physical file and URL references.

Viewing image links

You can view all image record links in your database using the **Image Links** menu option.

The image links table with a filter applied. Data courtesy of The Morton Arboretum.
Document management

Introduction

Multiple documents of any type can be linked to any record in BRAHMS. This could be a PDF material transfer agreement or collection permit linked to a specimen, accession or transaction; a protologue description linked to a species; a sound file linked to an animal entry; or perhaps a video or slideshow linked to a botanic garden greenhouse record. You can also link URLs as documents. These may be references to documents that require user permissions to view, for example, as stored in SharePoint.

![Linked Documents](image)

Linking pdf, docx, wav, pptx and xlsx documents to a species record. Media and documents can be opened using the Open option or double-clicking on the linked entry.

Documents, document folders and database links

Documents are managed under the Images/Documents menu option. All linked documents, including URLs, are registered in the main documents table. Folders are auto-registered in a separate folders table. You can also view and filter on all document links for your database.

![The main Images/Documents menu](image)

Document folders in use are listed in the folders table.
In the document links table, the Record Identification field indices which record the document is linked to.

The option Document Links shows all links between documents and records in your database.

Editing document links

In any record, you use the Documents toolbar option to open the Linked Documented editor. In Edit mode, drag documents on to the window or use the Link option. Double-click a link to open the document. You can copy a linked document to all tagged records.

Viewing and editing document links.
Dynamic weblinks

Weblink toolbar

You can dynamically link your data records in any table to external websites as provided on the WebLinks toolbar. From BRAHMS v8.6 onwards, WebLink options are configurable, allowing you to add websites that you find most useful. As an ornithologist, mycologist, plant taxonomist or a researcher with another interest, you can select personal Web Link connections as well as use sites that are shared across your BRAHMS project.

An example of the weblinks toolbar, edited to show a selection of website links.

Add your own weblinks

Web Links can be configured to include search parameters that enable dynamic searching as you move through your data grid records. The Web Links editor on the Management menu includes options to select icons and toolbar text; add the URL with the appropriate search parameters utilizing any BRAHMS data field from the relevant table; set whether the link is personal or shared; choose the BRAHMS tables your weblinks are associated with; and set the order in which they appear. The ability to edit Web Links is permission controlled.

In the following example, a dynamic link to iNaturalist is added:

- Select Management > Manage Weblinks and then New Link.
- Enter the data as provided in the below screen.

You can download the logo by searching for ‘iNaturalist’ logo. Then upload this to the Weblink Editor using the icon lookup. Keep the toolbar label as short as possible. The description is optional. The entry in the URL text field is:

```
https://www.inaturalist.org/observations?place_id=any&taxon_name=<GenusName>+<SpeciesName>
```

but you could also use e.g.

```
https://www.inaturalist.org/observations/<Int06>
```

where <Int06> is a BRAHMS custom field name holding the iNaturalist ID code.

The field names inside <> are interpreted when you use the weblink, replacing the BRAHMS field names with the actual data values.

You can use the Parameter Search and Property options to help locate the correct search field names in the respective table.
Setting the **Availability** using the multi-value lookup button is important as this dictates which tables the weblink option will be available for. Thus, if you want this toolbar to appear in the species table, make sure “Species” is added to the availability list.

Weblinks can be personal (user-specific) or shared. The **Shared Link** option dictates whether other users on a network system will see your weblinks.

Weblink examples

- Select **Taxa > Species** to open the main species table.
- Select **Weblinks** and choose one of the available weblink options.

An example using the above added Weblink

Another example using a dynamic link to GBIF.
Some further examples follow:

In this example, the POWO website has been opened on Podocarpus taxifolius, a synonym of Prumnopitys montana. Moving data grid records auto-updates the open weblink page. The species form is opened on the synonyms tab and the various windows are docked.

An example with 2 weblink sites opened at the same time. Linked weblink windows can be dragged to different monitors.
Example with the ant genus *Acromyrmex* on Google Images.
Biblio module and Literature

Introduction

You can store references of any category (books, journal articles, websites, etc.) and then link these to any record in your database. For example, you may want to link a book, a book chapter, a report or journal article to a species or to a selected text entry for a species.

As discussed below, reference entries can be stored as complete reference text strings with no attempt to divide the text into the component fields – or you can store the reference using the separate fields for author, title, journal, pages, year, etc.

Page numbers can also be added to the record that links a database record to the literature entry. Thus, you might enter the details for a book or manuscript once as a reference for many species. The record that links the species to the book will include the page numbers and other details about the nature of the literature link.

Adding and editing literature entries

Select Biblio > Literature List to open the main table for literature. On the same Biblio menu, you will find table of literature categories and journal listings.

Viewing reference entries in the main literature table.

The Full Reference field can be used to quickly add a complete reference string – without needing to add data to the separate fields – although data added to separate fields provides greater control. The Full Reference field is auto-updated from the other fields IF an entry is made in the TITLE field.

Linking literature entries to data

Literature links are created using the Literature option on the Data Tools toolbar.

This option allows you to select any item from your main literature list and link this to the current record. You can link multiple literature links to any record, optionally adding the relevant page/plate numbers, the link status (for example ‘Synonymy’) and comments.
An example showing the Literature link option opened. This option lists all existing links for the current record and allows you to add/remove links.

Linking literature to taxa text entries

Literature links to taxa text descriptions can be made directly in the Taxa > Taxa Descriptions table.

In Edit mode, use the form Edit option to edit the text and/or literature links.
The species form Text option – with the edit option in use. Here, you can add/edit the text entries as well as linking literature entries.
Personal names and authors

Introduction

Under the Management menu, you can find options for managing the centrally used tables for People, Assembled name strings and the Address book. The section explains the use of these 3 tables within BRAHMS.

People table

The people table is opened from Management > People. You can add names to this table individually, filling in fields as available. This table is used to store names of people such as collectors, taxa and reference authors. It is also used to store taxon author abbreviations.

The people table itself is a stand-alone table. It has no relations to other tables in the database. Thus, names here can also be deleted with no impact on the rest of your database. You can develop a clean list of people names and use this list to help construct assembled name strings (see below).

Fields such as Title and Forename are optional. When storing taxon authors, the field Abbreviation must be added. Other fields such as Staff Member can be added and have their uses for filtering.

As this table is stand-alone, you can safely delete any entries with no impact elsewhere in the database. The main function of the people table in BRAHMS is to help you create assembled name strings – as discussed below.

Assembled name string table

Introduction

The assembled name strings table is opened from Management > Assembled name strings. This list is effectively used as a lookup list for names and name combinations. It is used for the following lookups: Collectors, Additional Collectors, Determined by names, Taxa authors and Reference authors.

Recent changes to table relations in BRAHMS mean that, as with people names, you can safely delete assembled name strings without having an impact on the assembled names as stored in BRAHMS. This is because all text is stored in the tables themselves. This has been done to simplify table relations in BRAHMS.
Looking up assembled names

When you are adding or editing, for example, a collector name or a species author, use the lookup tool to open the Assembled-Names Selector. If the name or name combination for not exist, you have a number of options:

a) You could simply type the new collector or author name into the table you are working in.
b) You could decide to register the new name or name combination in the assembled names table.

Creating new assembled names

If the name you want is not in the assembled names list and you want to register it there rather than just type it in, you can add the new name or name combination using the Create option.
Using the Create option, you can choose names on the left panel which are listed from your People table – and add one or more names to the right panel, building a new combination.

If the person name is not registered in your people name list, you can add this:

Adding a new person from the Name List Creator form.

Taxa author names

Selecting an existing author or author combination

As described above, if the author string required already exists, you can locate and select this using a lookup option in the author field you are editing.

Creating and formatting new authors or author combinations

If the author name or name combination does not exist in your assembled names list, you can type it in to the author field or register this as a new assembled name entry. BRAHMS can help you correctly format complex author name combinations.
Here Gordon has been set as the Basionym author and the 'ex' option selected for Hildebr. creating the string (Gordon.) Lindl. Ex Hildebr.

Note how the string is now formatted when the authorship options are edited as above.

Misapplied, ambig. and Hort. Entries

Quick options are provided to select the entries ‘misapplied’, ‘ambig.’ and ‘hort.’ As author entries.

Using sensu and adding suffix text

Author selections can be prefixed sensu and have a suffix added:
Use the formatting options provided to create a string such as sensu Carrière 1890.

Is Author

Note that the Assembled Name strings table has a flag to indicate whether an entry is an author string or not. This field is used to filter selections when selecting author strings.

Updating Assembled Names from the Summary Tool

If you have collector, author or detby names added to your various tables, you can check these are registered in the assembled names string table using the Summary Tool option ‘Ensure Name List Entry’.

In this example, the species table has filter to restrict to accepted Podocarpaceae names. The Summary toolbar option ‘Ensure Name List Entry’ has been selected. This option checks all the author names as uniquely listed in the summary tool are available in the assembled names list. If not, they will be added.
A closer look at taxa and related data

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#addingspeciestext

Introduction

BRAHMS has separate tables for Higher Classification, Families, Genera and Species, the latter including infra-specific names and cultivars. All ICN and ICNCP ranks are covered. There are also separate tables to store author names, common names, plant uses and text descriptions.

The main taxa tables

Higher Classification

The higher classification table, by default, stores taxa names from Kingdom through to Order. Further taxonomic levels can be added as custom fields.

Families and genera

The family and genus tables, in addition to storing the names of families and genera themselves can be extended with custom fields as needed by your project. Each name can be assigned an authority and be linked to publication details. Further nomenclatural fields are available such as taxon status, validity, legitimacy and nomenclatural notes. There are further fields for common names, museum location code, specialist name(s) and more.

Institutional codes such as the family and genus herbarium codes can also be viewed in the species table. For taxonomic projects, families and genera may be assigned types and may have synonym links. These tables also have various calculated fields to display totals for linked collections, images, seed accessions, living plants, etc.
Managing columns in the genus table. If entirely new fields are required, these can be added as custom fields. Data fields are also inherited and displayed from the higher classification and family tables.

Species and lower ranks

Species and infraspecific names are stored in the species table. A wide range of default fields are available from ranks between genus and species such as genus section and series through to all the infra-specific, grex, trade and cultivar names. As with the other tables you can extend the table by adding further taxon levels as custom fields.

Multiple Classification Systems

Introduction

You can implement ‘multiple classifications’ for family genus relationships in BRAHMS. This makes it possible to link a genus name to more than one family. There is no limit to the number of classification systems that can be adopted. This feature was initially developed in BRAHMS v7 with Naturalis (Netherlands) and has now been incorporated into BRAHMS 8. This approach may be required by herbaria where there is more than one family-genus system in use. In the case of Naturalis, the herbarium consists of a merger of the previously separated Leiden, Utrecht and Wageningen herbaria where the genera were curated under different family names.
All databases have a default system known as ‘Default’. Most projects will not need to adjust this or add any further classification systems. However, for some, it may prove useful for curation and/or for publication purposes, to cite genera under different family names.

Adding a new classification system

New family-genus classification systems are added using **System > Options > Taxa > Classification Systems**. Using the **Add** option, you can add a new system and assign this a name. In databases with a large number of genera, this process may take a few minutes to complete.

When you add a new system, behind the scenes, the ‘family-genus’ table is updated with copies of all genus names, initially linked to the default family name.

If using multiple classification systems, you can choose one as the default for all users. Otherwise, the default entry (named ‘Default’) is used.

Assigning a preferred classification system per user

In the user table, opened using **System > Manage Users & Permissions**, you can assigned each registered user a default classification system. This system will be used as that user’s classification system through the system. Note that you can also set whether a user may switch to a different classification system when logged in.

The user table allows you to set the classification system used per user and whether they can switch systems or not.

Switching classification systems

The main Taxa menu includes a dropdown menu listing the available classification systems. Users, with permission to do so, can easily switch system. The selected system will remain in operation during the log in session unless changed. When the user logs in again, that user’s default will be selected.
Selecting/switching classification systems when logged in.

Note that when a classification system is selected, data will appear in the selected family-genus system throughout BRAHMS.

Browsing all family-genus links

By selecting Taxa > All Genus-Family links, you can review all links, using filters as appropriate. You can also edit the family name for the selected genus.

Editing Family-Genus links

There are 2 ways to edit family-genus links:

- In the main genus table, use the standard lookup for the family. This will set the family name for the selected genus for the user’s currently selected classification system.
- In the main family-genus table, you can adjust the family name for a genus in the selected classification.

Deleting a family or genus

When you delete a genus name, this will remove the name under all family classifications.

When you delete a family name, this would delete any genera linked to that family name – as well as any data associated with those genera. Thus, if you have a family name that you wish to delete, make sure that there are no genera linked to that name in the family genus table.

Importing taxon names via RDE

When importing RDE files for taxa or any other data that have taxon names (e.g. herbarium specimens or plants), if a new genus/family name is added, this will be added for all classification systems. You would then be able to edit the classification as appropriate for newly added genera.
Finding names and using taxa lookups

Family names

When looking for a family name, for example in RDE or in the main the genus table, typing in the Find box selects matching family names - pressing Enter or double-clicking on the selected record selects the family at the top of the list and adds this to your data table. Note that you can also use the yellow grid filter boxes. Choosing a family will also add ranks above the family name (Order and higher classification fields) if these are available.

Genera

When looking for a genus name, for example in RDE or in the main the species table, typing in the Find box selects matching genus names - pressing Enter or double-clicking on the selected record selects the genus at the top of the list and adds to your data table. Note that you can also use the yellow grid filter boxes. Choosing a genus name will also add ranks above the genus name (Family and higher classification fields) if these are available. To optimise searching, you can add a few letters of the family and genus names. After some practice, you can learn to enter the minimum number of characters to reach the required record. Clearly, the more extensive the taxa dictionaries are, the more letters you will need to enter to select the correct record.

Species names

When looking for a species name, for example in RDE or in the main the species table, typing in the Find box selects matching species - pressing Enter or double-clicking on the selected record selects the species at the top of the list and adds to your data table. Note that you can also use the yellow grid filter boxes. Choosing a species name will also add ranks above the species name (Genus and higher classification fields) if these are available. To optimise searching, you can add a few letters of the family and genus names. After some practice, you can learn to enter the minimum number of characters to reach the required record. Clearly, the more extensive the taxa dictionaries are, the more letters you will need to enter to select the correct record.
With species lookups, you can add a few genus and species epithet letters, experimenting with the optimal selection to get to required record. The right-side example is searching on the species epithet alone. Bear in mind that the yellow grid filters can also be used. As the species table is more complex than most, there are a number of other rules to consider to help locate names quickly, all requiring a little experimentation. As a rule, you can enter any part of any name epithet to locate a name. If you are explicitly looking for a plant cultivar name, add a single quote before the name or part of the cultivar name.

As these data are hierarchical, if you know the species, it is not necessary to use a lookup in the family or genus field as the species lookup will add data to all these fields as well as higher classification.

Entering parts of name epithets, as shown above, can locate a name quickly

An example using a single quote to locate cultivar names starting with 'whit'

Here some genus letters have also been added.
In this example [whit locates all name with trade epithet that include [whit

Adding a new species

You can add new species to your database either directly or via Rapid Data Entry (RDE) files. RDE is normally used when you have many new names to add. In this example, add the new names directly into your database using the data grid and/or the species form.

If the new names are in families or genera not yet stored in BRAHMS, you need to add these first. For example, to add a new genus:

- Select **Taxa > Genera** and then use the **Add** option on the **Data Tools** toolbar to append a blank record.
- Select **Edit** on the **Data Tools** toolbar to switch to editing mode – then type in the new genus name.
- To select the family name, use the lookup function (**F9 key**) in the **Family** field.
- Now select **Taxa > Species** and then use the **Add** option on the **Data Tools** toolbar to append a blank record. Enable editing mode by selecting **Edit** on the **Data Tools** toolbar.
- New data can either be added directly to the data grid or using the species form opened using the **Form** option on the **Data Tools** toolbar.
- Using either the data grid or the form, add a few new species records, adding as much detail as you want.

Editing a species author name

For further details on this process, refer to the name strings section on **Editing taxa author names**.

Author name abbreviations are stored individually in the main People table. However, the author name compilations that link to taxonomic names come from the ‘Assembled name strings’ table. Both tables can be opened under the **Management** menu. Authors of taxa may consist of formatted combinations of names as in ‘(Poepp. ex Endl.) Tiegh.’. You can edit names from the grid or from the species form. Author names are held in a separate table and thus cannot be edited directly in the grid or form. You have to use a lookup function.

- Select **Taxa > Species** to open the species table and locate a species to edit. Ensure you are in Edit mode. Go to the species author field and in Edit mode, press the **F9 key** to activate a lookup.

Synonyms

A name may have one or more synonyms. Synonyms may, optionally, be marked with an appropriate taxon status (e.g. Syn or Synonym) and be assigned to a synonym category (homotypic, heterotypic, basionym as examples). The calculated field **#Syns** shows the total number of synonyms linked to a name.

The easiest way to make one name a synonym of another name is to use a lookup in the field **Synonym Of**.
In this example, Podocarpus currentname has 2 synonyms. The name P. oldname1 also has 1 synonym linked.

Synonyms can be also listed and edited from Synonyms tab on the species form.

Synonym links can also be edited from the Synonyms tab on the species form.

Using the ‘G tag Syn. Group’ option, all taxa records in the current synonym group are tagged ‘G’, regardless of any filters you may have in place. The adjacent Filter option will filter the main taxa grid to G tagged records. You may use this option to tag multiple species synonym groups. The drop down on the ‘G tag Syn. Group’ option provides additional option to clear G tags for the current synonym group or for all G tagged records.

Further details about synonyms can be added to the text fields Synonym Note and/or Nomenclature Note.

Common names

Common names can be linked to family records and to the main taxa table. A taxon entry may have numerous common names across its range and each these can be recorded with notes about name origin, meaning, language and folklore. Common names can be listed directly by open the common names table – or by using forms on the main species/entity tables. Names can be added directly to the table and/or from the forms.
The common names table has the following structure:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Standard field for tagging records</td>
</tr>
<tr>
<td>Del</td>
<td>Standard field for deletion</td>
</tr>
<tr>
<td>CollectionEventId</td>
<td>Link to a collection event (and thus location/species)</td>
</tr>
<tr>
<td>SpeciesId</td>
<td>Link to a taxon name</td>
</tr>
<tr>
<td>EntityId</td>
<td>Link to an entity</td>
</tr>
<tr>
<td>Common name group</td>
<td>Names can be organised into groups</td>
</tr>
<tr>
<td>Common name</td>
<td>The common name</td>
</tr>
<tr>
<td>Homonym</td>
<td>Differentiate between identical names</td>
</tr>
<tr>
<td>Name rank</td>
<td>A numeric code to rank names by preference</td>
</tr>
<tr>
<td>Suppress</td>
<td>A flag to suppress (offensive) names when publishing</td>
</tr>
<tr>
<td>Language</td>
<td>The language of the common name</td>
</tr>
<tr>
<td>Dialect</td>
<td>The language dialect</td>
</tr>
<tr>
<td>Source</td>
<td>The source of the name</td>
</tr>
<tr>
<td>Etymology</td>
<td>The meaning of the name</td>
</tr>
<tr>
<td>Interview</td>
<td>Notes on interview (e.g. with local people)</td>
</tr>
<tr>
<td>Folklore</td>
<td>Name folklore</td>
</tr>
<tr>
<td>Comments</td>
<td>Other comments</td>
</tr>
<tr>
<td>GeoNote</td>
<td>Geographic notes (especially where no linked collection event)</td>
</tr>
<tr>
<td>Audit fields</td>
<td>Standard audit field (who/when added/edited)</td>
</tr>
</tbody>
</table>

Text descriptions

Free text descriptions can be stored and linked to different taxa levels (currently family, genus, species and infra-taxa). Text can be added under any category such as Description, Distribution, Ecology, Uses, Conservation, Taxonomic notes, etc. You may want to store several descriptions for a species – from different sources. Each entry can be linked to a reference source.

With the species form open, select the **Texts** tab. You can add new entries as well as edit or delete existing entries.
To add a new entry, use the button adjacent to the species name.

All text entries are stored in a special table which you can also edit directly using Taxa > Taxa descriptions.

Further taxa options

Name editor

The name editor allows you to update all or tagged dependent names. For example, you may have a species named maxima in the genus Cattleya which is incorrectly spelt or has to be changed for another reason. The species may have dependent names (subspecies, varieties, formas, cultivars or ranks). This tool allows you to edit the name of the species (or any other selected rank below genus) for all or tagged records. You would use the tagged option if you were separating names into different groups.

A hypothetical example where the species named maxima in a particular genus could be quickly edited for all dependent names, in this case, a series of cultivars.

Orthographic checks

This tool provides a way to quickly check names that have potential spelling errors. It does this by sorting names A-Z and then checking for names with the number of character differences you select in the Match
Tolerance setting. Records which vary with 1 character are tagged 1. Those with 2-character differences are tagged 2, etc. After processing, a filter is set to show the tagged records.

An example check showing records with 1- and 2-character differences. It is then the decision of the person checking the data if the differences are valid or mistakes.

Taxonomic Name Resolution Service (TNRS)

The TNRS service provides another mechanism to check names. His is run from the main species table using the TNRS option on the Taxa toolbar.

To use this option, Tag the names to check, Select the TNRS option on the main Taxa menu and copy the names from the generated BRAHMS text area into the TNRS Names to Check box.
Listing all related taxa names using from the Infra+ tab

From the main species table, use the Infra+ tab on the species form to list all names with the same species epithet within the current genus. Here, you can also access descriptive text linked to any of the taxa in the list.

- Select Taxa > Species and then open the species form – then select the Infra+ tab.

Note that you can restrict the names listed to selected ranks. The fields displayed in the grid can be adjusted using a right-click on the grid header. The Taxon Descriptions option opens any text descriptions as available.

Extend tags to related infra taxa

The option Extend tags to related infra taxa will tag all records of names that belong to the same species as any currently tagged records.

In this example, all records of Abies Alba have been tagged based on the tagged record in the left screen.

Tag synonyms of tagged records

The taxa menu option Tag synonyms of tagged records tags synonyms of any tagged records.

In this example, synonyms of Dacrycarpus kinabulensis have been tagged.
Collection events

Introduction
Collection events refer to the data describing an item found in a specific place usually by a known person on a known date. A collection event may result in physical specimens (living or preserved). An event may also refer to an observation, a literature citation or any other source of data. Collection events themselves are not physical specimens.

To access collection events, select **Collections > Collection Events** on the main menu.

Some records from a typical events table. Events keep track of the collector(s), field number, collection date, locality as best known, descriptive text about the location, habitat and the item itself and the identification the item is known by (the 'selected determination'). You will not find an accession number or barcode as these belong to physical specimens. Many other event fields are not visible in this screen.

The collection events Form provides access and editing tools for linked specimens and their determinations. With this event for a plant collection, there are 6 specimens distributed to various herbaria. The specimens are types with the holotype at Leiden. Each specimen may have 0 to many determinations.

Collection categories
The **Category** option on the Collection toolbar is used to further define the toolbar options for preserved specimens, living collections, seed banks and others. In all cases, data for the events themselves are stored in the same table.
Selecting a specific collection category alters the toolbar menu options.

Links to living collections and seed accessions

Collection events are also used to record the wild origin for living plants and the collection passport data for seed accessions. For example, in a botanic garden, if the wild origin of a plant is known, the living accession entry will be cross referenced to a collection event.

Geographic data, maps and elevation

The collection event location will be defined as accurately as possible. Details gathered from older specimens may be rather vague, to country level while these days, collections are often geo-referenced with pinpoint accuracy using a GPS map reading.

Locality names and the gazetteer table

Collection events link to an entry in the main gazetteer or places table which is opened and edited using Geo > Gazetteer. The gazetteer table stores a link to the country table and then the names of major and minor administrative areas and a locality name if known. Map and elevation data can be added. The gazetteer record may only have a country name – the other data may be unknown and left empty.

The collection event record has a link to the gazetteer locality. In the collection event table itself, you can store locality notes and map/elevation data. Map and elevation data stored here always take priority over these data in the linked gazetteer record.

Map data

The use the map editor is discussed in the relevant map section.

Elevation

Elevation data are stored in m and if added to the grid, should be added in m. units. NB a new editor is being added to allow m or ft. On the Map point editor, elevation can be added in m or ft and if using ft, the data are auto-converted to m.
An example where the altitude is entered in ft but stored in m.

Selected determination

Collection event records include a species identification – and this name is known as the *selected determination*. An event may have one or more specimen vouchers – and each of these in turn may have one to many determinations. The name you choose to use for the event can be selected (see below under Determinations).

Projects and expeditions

The Projects/Expeditions table stores details on the start and end dates, funding, team members, deadlines and notes about projects and expeditions. Each entry can be assigned a short text code.

This table is mostly used to group together collections linked to a funded project - or all collections (preserved and/or living) made on a named field trip or expedition. An expedition may take place over a number of years.

Collection events can be linked to Project/Expedition records. The project/Expedition fields: Category, Project/Expedition Code, Project Name, and Team can be viewed in any table that has a relation to collection events including the Plant Accession and Plants tables.

Collection events can be linked to Project/Expedition records. They can also be viewed in related tables including plants and preserved specimens.

Project/Expedition records are linked to collection events using a lookup on any of the relevant Project/Expedition fields.
Museum and herbarium specimens

Some of the key features

- Scalable, to manage any size of collection.
- Allows multiple users to add and edit data simultaneously, with access permission controls.
- Store data for any category of specimen.
- Store one to many physical specimens per collection event.
- Store one to many determinations per specimen.
- Add project specific fields to your database structure if these are not included by default.
- Link images to specimens as physical files or media library URLs.
- Design report templates for lists, loan forms, labels and determination slips.
- Optimize specimen data capture using the Rapid Data Entry module.
- Import specimen data donated from other databases and websites.
- Use specimen data to develop checklists and analyse diversity for differently scaled areas.
- Map geo-referenced collections to show distribution by species or any other queried dataset.
- Publish specimen details with images online.

Preserved specimens

Specimen records

If a collection event leads to vouchers being taken, these specimens will eventually be deposited in a museum/herbarium collection. They may be formally mounted and incorporated to the collection. Examples are birds, insects, fungi, ferns, higher plants – or indeed any form of preserved natural history collection.

Each specimen is linked to one collection event. Many of the fields seen in the specimen table data grid are inherited and displayed from the collection events table. However, others are specific to the specimen including the category of specimen, the institute code where it is deposited, accession number, barcode and various other fields including details for type material.

The options for specimens are available when you select the category ‘Preserved Specimen’ on the Collections menu.

Adding/editing specimens

Specimens can be added to the specimen table directly using the standard Add option on Data Tools.
Adding a specimen directly to the specimen table.

Alternatively, you can add a new specimen when using the collection events form.

Specimen form

The specimen table has its own form. This can be used to add/edit specimen records and their determinations.
The specimen form has tabs to list all determinations and view/edit custom fields.

Duplicates

Sometimes, material is duplicated to more than one institution, especially the case with plant material. In this case, there will be two or more specimen records linked to the same collection event but with different specimen level details (where deposited, barcode, etc.). There is no limit to the number of duplicates you may store for a single collection.

A collection with 4 specimens deposited at different institutions. The related event record is stored once. Only one of the specimens has a barcode.
Specimen and type categories

These lists are held in separate tables.

Museum boxes and folders

Some museums (including herbaria) organize material in boxes which may have barcodes and location details.

Example list of barcoded boxes with a filter set to show contents with Lichens. Screen taken from Naturalis herbarium database.

In herbaria, specimens are organised into folders — and these folders themselves may be barcoded and registered in your database. The folders may be in a known box. Individual specimens can be associated with a folder.
Determinations

Introduction

The identification of a specimen may change. An expert in the taxa group may provide a new name, perhaps on a museum visit or by returning a loan. When a new determination is provided, a determination record is added to the specimen. This is better than editing the existing determination record as it ensures that previous dets are maintained.

A collection with several specimens may accumulate different determinations linked to each specimen. A decision must be taken as to which name to select as the correct one. This is referred to as the selected det and the name is stamped into the collection event.

Editing specimen determinations

The collection event form includes options to add, delete and edit determination records.
After adding a new determination record, you have the option to set this determination as the ‘current determination’ of the specimen. Also, using the option Set as Selected Collection Event Det, you can choose the determination as the name to use for the collection event itself.

To access the determinations table directly from the main collection menu, ensure you have the category ‘Preserved Specimen’ selected then select the Determinations option.
Introduction

The living collections module within BRAHMS manages data and related media for botanic gardens, arboreta and other horticultural projects. The module, which already takes advantage of all standard features to edit, query, report, map, export and publish online, adds comprehensive features for garden accessions and plants and their management. As these data are fully integrated within BRAHMS, it becomes possible to develop a comprehensive system for both management and research.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxa</td>
<td>An infrastructure of taxa from higher classification to infra-specific levels, cultivars and hybrids. Storing synonymy, common names, trade names, groups, series, grexes, patent IDs, descriptions, native distribution, hardiness, shade tolerance, water requirements, conservation status and further horticultural details.</td>
</tr>
<tr>
<td>Gardens</td>
<td>Garden name(s) and details, especially useful for multi-site projects where each garden/site may have its own configuration requirements.</td>
</tr>
<tr>
<td>Garden Layout</td>
<td>Garden locations are recorded from defined garden areas or theme zones down to pinpoint map locations with options to record bed, grid numbering and map shape files.</td>
</tr>
<tr>
<td>Institutions</td>
<td>Comprehensive lists of institutions and addresses of suppliers and donors or those receiving material through purchase or transaction exchanges.</td>
</tr>
<tr>
<td>Accessions</td>
<td>Storage of accession records including details of the type and quantity of material received, who and where from, the original or derived source, and the initial identification.</td>
</tr>
<tr>
<td>Propagation</td>
<td>Propagation details for all plants including cuttings, grafts and seed - linking this to production propagation to supply garden plants.</td>
</tr>
<tr>
<td>Plant records</td>
<td>Storing plant records, linked to accessions, with all details of plants in the garden from planting out to their disposal, loss or death.</td>
</tr>
<tr>
<td>Plant events</td>
<td>Events for plants. Examples are plant maintenance and stock-checks; name changes; observations on leaf flush, flowering, fruiting, disease and cause of death.</td>
</tr>
<tr>
<td>Plant requests</td>
<td>Requests are logged in the plant management requests file with their ongoing status.</td>
</tr>
<tr>
<td>Label requests</td>
<td>A table showing label requests, pending or otherwise, used to control label print runs.</td>
</tr>
<tr>
<td>Transactions</td>
<td>The management of incoming material, exchanges and other transaction categories as defined.</td>
</tr>
<tr>
<td>Collection Events</td>
<td>Details about what was collected when, where and by who. Collection events are used to record the wild origin of plants and other collected material such as herbarium specimens. An herbarium specimen or other material with garden origin will have an event linked to a garden plant.</td>
</tr>
<tr>
<td>Vouchers</td>
<td>Vouchers and related materials can be stored for wild collections and/or established garden plants.</td>
</tr>
<tr>
<td>Images and Documents</td>
<td>Images and documents associated with Accessions, Plants, Vouchers, Transactions, etc. These can be physical files or media library URLs.</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Legal/Permits</td>
<td>Details of all permits and related documentation for the accession, use and exchange of material, evidence of due diligence and restriction requirements.</td>
</tr>
</tbody>
</table>

Summary of the key components used in the living collections module.

The key tables and relationships associated with the Living Collections module.

Getting started with the living collections module

There are a number of procedures to consider to get started and to optimise your use of this module:

Import default living collection lookup lists

You can import (from Excel) commonly used lookup values related to living collections. These will be added to your custom lookup dictionary.

The Plant and Accession tables have many fields suitable for use with custom lookups. You can use these to speed up and standardise data entry and editing tasks. By defining custom lookups, you can force users to select from pre-defined lists rather than type in free text. An example would be with plant status codes where you may establish a list with values Alive, Lost, Dead, Disposed and Not Found. Another example is with Provenance Type. Most gardens use a standard coding system: W, G, Z, U. As these are single letters, frankly it’s faster to type in the letter rather than use an elaborate lookup. However, you will probably not want a user to add an incorrect value such as ‘Y’ and the lookup system can also prevent wayward entries by enforcing selections. Different projects have their own coding system. Normally, you will want to ensure that if a value is selected, it comes from your list of options rather than being entered as free text. This keeps the database in good shape and avoids multiple entries that refer to the same thing.
Most gardens share a common set of lookup values for many standard fields, for example U W G or Z for Provenance Type.

Details on managing lookup lists are provided in the section on Lookup lists.

Accession and Plant ID numbering

The setup options for these are discussed in the relevant sections below.

Keeping your species data in good shape

Information about taxonomic names from higher levels down to infra-specific ranks is provided in the main taxa section of this guide. For botanic gardens and horticultural projects, the priorities for name management tend to be different to museum and research projects. There is a greater emphasis on storing names of cultivated plants, hybrids, common and trade names for families and species, succinct descriptions of the natural distribution of taxa and their horticultural properties. You can store as many facts about species as you want. For example, you can add multiple common names, conservation status, CITES and red list details, range, habit and hardiness.
Accession records

Accessions vs Plants

Left. An Accession may lead to several garden plants. Right. A selection of the fields available in the main accession record.

Accession records include details of the type and quantity of material received; from who and where from; the ‘received as’ species name; its wild origin if known; and other details about the material, as available.

To see all the fields available, the best procedure is to select Collections > Accessions, assuming the Category ‘Living collections’ has been selected, then select Grid Tools > Manage Columns. Here you can scroll down the entire field list. An accession record is always one species. Once processed and propagated as needed, perhaps over several years, an accession will then potentially lead to one or more garden plants.

Accession numbering

Accession numbering systems vary from project to project. A common approach is to use a sequential number combined with the accession year, for example 2015-01, 2015-02,

Accession number formatting is controlled from the settings on System > Options > Living Collections > Accessions. Here, you can opt for free text entry (no rules) or choose from a set of rules to define numbering. These rules apply when new accession IDs are added to the system.

Adding a new Accession record

To add a new Accession record, open the main Accessions table on the Collections menu and use the Add option. You can optionally do this with the form opened. The Accession ID will be auto-calculated depending on your configuration settings. The number of fields you add is optional but minimally, you should add the species name. For this it is best to use the lookup for the Received As Species name as this will also set the Current Species Name which can be edited if different.
Locating a species is efficient, even when you have many 1000s of names. Refer to the section on locating species names for some hints.

If you want to record determination edits more formally, use the Identification tab on the Accession form. Here, you can record multiple names for an Accession, with details of who provided the name changes.

Source/Wild origin

The source/wild origin of an accession can be registered from the Source/Origin Tab on the accession form. This links the accession to an existing or a new collection event. The accession record also has text fields to describe the origin.

Supplier/donor details

The names and address of institutions, plant and seed suppliers, and others you have links to are added to the main address table under Management > Address Book. The table can be edited directly in the data grid and/or using the form.
An example entry in the Address Book

A section of the Accession table form showing the lookup option for supplier names.

Calculated fields for accessions

As with many other tables, the Accession table has some handy calculated fields which can be updated using the **Recalculate** option on the Data Tools toolbar. Calc fields can be selectively enabled using Manage Columns or you can view them all using **Calc Fields** on the Grid Tools toolbar.
An example showing some of the calculated fields in the main accession table, here sorted by the total number of linked plant records.

Plant summaries per accession

A quick way to view all plant records for a given accession is to use the Plant Summary tab on the Accession form. This provides a summary of the accession origin and a grid list of the plant records.

The visible plant list fields can be adjusted by right-clicking on the grid header. Grid filters can be used.

Gardens, Garden locations and plant locations

Introduction

The garden location setup allows for single and multi-site gardens.

Garden plants can be linked to a garden location record. These location records are in turn linked to garden records thus creating a hierarchy. Gardens and garden locations can have map references and map shapes files, the name of the responsible curator and other details as appropriate.

The way the garden location tables and fields are used varies by project. Different gardens have their own way of classifying the locations, their purpose and sub-divisions.
Gardens

The gardens table is opened using the Gardens option on the main Collections menu (when in living collections mode). As discussed below, you can associate a user with an entry in this table, restricting their access to data from other gardens.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Standard tagging field</td>
</tr>
<tr>
<td>Del</td>
<td>Standard deletion field</td>
</tr>
<tr>
<td>#Images</td>
<td>Calculated field: number of linked images</td>
</tr>
<tr>
<td>Garden Name</td>
<td>Name of the garden site</td>
</tr>
<tr>
<td>Garden Code</td>
<td>Code if one is provided</td>
</tr>
<tr>
<td>Garden Status</td>
<td>Status code</td>
</tr>
<tr>
<td>Curator</td>
<td>Name of area curator</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments</td>
</tr>
<tr>
<td>Audit fields</td>
<td>Standard audit fields</td>
</tr>
</tbody>
</table>

Restricting access by garden

In multi-site projects, they may be a requirement to restricted access and editing rights on a user by user basis. For this purpose, the main User table has options to manage these restrictions if required.

Under System > Manage Users and Permissions use a lookup option to associate a user with a selected garden name/code. If you select Allow Garden Section, that user would be able to override the selected garden name. Otherwise, the user will be restricted to see and edit data from their assigned garden.

Garden localities

The garden localities table is opened using the Garden Locations option on the main Collections menu (when in living collections mode). These records can be linked to the garden entries as discussed above using a lookup in the Garden Name field. Localities can be classified into functional areas, categorised into zones and assigned a garden locality code. Further fields are defined below.
Locations can also be assigned a Locality Classification which can be used to indicate the overall purpose of the location. The examples above are provided by The Morton Arboretum.

Using locality table form, you can list plants per location. A Right Click on the form grid header allows you to choose the visible fields. Moving through the main grid updates the plant list.
Using locality table form, you can map plants per location. Moving through the main grid updates the map. Various options are provided to filter plants on the form. The garden locations form can also draw shapes (garden areas) based on the file name added to field KML File.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Standard tagging field</td>
</tr>
<tr>
<td>Del</td>
<td>Standard deletion field</td>
</tr>
<tr>
<td>#Living Alive</td>
<td>Calculated field: number of linked plants with status Alive (or equivalent)</td>
</tr>
<tr>
<td>#Living Other</td>
<td>Calculated field: number of linked plants with status other than Alive</td>
</tr>
<tr>
<td>#Families</td>
<td>Calculated field: number of families in location (from plant record links)</td>
</tr>
<tr>
<td>#Genera</td>
<td>Calculated field: number of genera in location (from plant record links)</td>
</tr>
<tr>
<td>#Taxa</td>
<td>Calculated field: number of taxa in location (from plant record links)</td>
</tr>
<tr>
<td>#Wild Derived</td>
<td>Calculated field: number of plants with Provenance Type = W</td>
</tr>
<tr>
<td>#Cultivated derived</td>
<td>Calculated field: number of plants with Provenance Type = Z</td>
</tr>
<tr>
<td>Images</td>
<td>Calculated field: number of linked images</td>
</tr>
<tr>
<td>Garden Name</td>
<td>Name of the parent garden (from Garden table)</td>
</tr>
<tr>
<td>Garden Code</td>
<td>Garden code – optional (from Garden table)</td>
</tr>
<tr>
<td>Locality Classification</td>
<td>For example, Landscape collection, Horticultural collection, ...</td>
</tr>
<tr>
<td>Garden Area Name</td>
<td>Name of a garden sub-division</td>
</tr>
<tr>
<td>Garden Location Name</td>
<td>Name of the garden location</td>
</tr>
<tr>
<td>Garden Location Code</td>
<td>Location code if one is provided</td>
</tr>
<tr>
<td>Location Status</td>
<td>Status code</td>
</tr>
<tr>
<td>Aspect</td>
<td>Location aspect</td>
</tr>
<tr>
<td>Grid</td>
<td>Location grid reference</td>
</tr>
<tr>
<td>Latitude/Longitude</td>
<td>Map reference fields also with datum, resolution, origin...</td>
</tr>
<tr>
<td>Elevation</td>
<td>Min and Max altitude</td>
</tr>
<tr>
<td>KML file</td>
<td>Shape file</td>
</tr>
<tr>
<td>Prefix</td>
<td>Text prefix for area name (can be used in e.g. reports)</td>
</tr>
<tr>
<td>Curator</td>
<td>Name of area curator</td>
</tr>
<tr>
<td>Comments</td>
<td>Comments</td>
</tr>
<tr>
<td>Audit fields</td>
<td>Standard audit fields</td>
</tr>
</tbody>
</table>

Plant table location fields

In addition to the above location options which store details about garden areas – more precise details are added to the plant table itself. Different gardens have their own system for recording plant locations using up to 6 subarea fields which can be defined using the configuration option.
An example Plants table showing some of the location fields, sorted by Location name + Grid + Sub Grid. NB. Use Shift Click on header fields to sort on multiple fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden Name</td>
<td>From Gardens table</td>
</tr>
<tr>
<td>Location Name</td>
<td>From parent garden locations table</td>
</tr>
<tr>
<td>Subarea 1</td>
<td>As configured (see below)</td>
</tr>
<tr>
<td>Subarea 2</td>
<td>As configured (see below)</td>
</tr>
<tr>
<td>Subarea 3</td>
<td>As configured (see below)</td>
</tr>
<tr>
<td>Subarea 4</td>
<td>As configured (see below)</td>
</tr>
<tr>
<td>Subarea 5</td>
<td>As configured (see below)</td>
</tr>
<tr>
<td>Subarea 6</td>
<td>As configured (see below)</td>
</tr>
<tr>
<td>Sequence</td>
<td>Sequence (e.g. for inventory or trail)</td>
</tr>
<tr>
<td>Latitude /Longitude</td>
<td>Map reference</td>
</tr>
<tr>
<td>Elevation</td>
<td>Min/Max altitude</td>
</tr>
<tr>
<td>Garden Location</td>
<td>Free text</td>
</tr>
</tbody>
</table>

Garden location subareas

The plant table itself has 6 plant location properties that can be used to manage plant locations in your gardens. These fields are, by default, named Subarea 1 - 6 and sit below Garden->Area->Locality in the location hierarchy. You can rename some or all of these fields to suit your own purposes. You can also disable (remove) these fields from use in grids or forms or make them visible or hidden as required in data grid views. For example, your garden may use a grid location system so you may want to rename Subarea 1 to 'Grid' and Subarea 2 to 'Sub-grid'. You might then disable the other Subarea fields.

Configuring the plants table locality fields.
Plant records

Introduction

The main plant file stores details of all plants that are or have been growing in the garden with details including the plant status (alive, disposed, etc.) planting date, garden location, vouchering, label requirements, identification changes, commemoration or sponsorship details, and mortality details.

Plant records in turn are linked to an accession record which holds all the information about the origin of the plant, the supplier and/or wild origin, its propagation history and the species/identification.

Plant numbering

Plant numbering is treated in a similar way to accession numbering although there are several different options. For example, you can use the Accession ID as the basis for the Plant ID or you can use various types of incrementing numbers such as **Plant year + Incrementing sequence** for that year. Plants can use numbers or letters when in sequences.

Editing the plant table

Adding new plant records

When adding new plant records directly to BRAHMS (rather than via RDE), you open the main plants table and use the Add option. It is important that you have checked and edited the setup options under System > Options > Living Collections. The options here control how new plant IDs are calculated.

When adding a new plant, the first step is to choose or add a plant accession record – using the lookup provided at the top of the Add Plant form.
If adding a new accession, you will be directed to another form that allows you to enter all aspects of that accession including species, supplier, wild origin, order dates, etc.

You can add data for 1 or more plants at the same time by editing the ‘# Plants to add’ field.

The upper part of the add plant form allows you to enter the plant garden location for each plant you are adding. Note that the Subarea fields are configured from System > Options > Living Collections. In this example, 3 of the 6 maximum subarea fields are in use.

The lower part of the form provides the means to print and/or request labels. The labels listed here are as entered in your main Labels table.
Editing plant records

Opened from Collections > Plants - assuming the Category Living collections has been selected. In Edit mode, all non-lookup fields can be edited directly in the grid or on the form.

A plant grid with a filter set on a single Accession. This Accession has several clones planted in different grid areas. Only a selection of the available plant table fields is visible in this screen. Field views are set using Grid Tools > Manage Columns.

The Plant table form opened. As there have been unsaved edits, the form has a red surround and the Save Changes option is enabled. This form has several tabs with different functions.
Plant status

Introduction
The plant status field is a key data field in the plants table as it informs whether a plant is alive/active or otherwise. The process of editing this field is often referred to as deading/resurrecting plants. Deading is when a plant is deemed to be dead, lost or otherwise disposed of. Resurrecting is when a ‘dead plant’ is re-discovered and/or found to be alive.

Configuration for Alive status
As certain calculations refer to the plant status code, BRAHMS has to know which code you use to represent a living plant in the plant record Living Status field, for example ‘L’, ‘A’ or ‘Alive’. To edit this code or text, select System > Options > Living Collections.

Setting status codes for accessions and plants. The code for living plants is used by BRAHMS with a number of calculations and settings. The code for dead/disposed is less important in this setup bearing in mind that you may have several codes representing dead, disposed, not found, etc.

Hide dead plants by default
The option Default to displaying living plant records only is used to hide non-living plants by default when the plant table is opened. This setting can be over-ridden when in the plants table itself.

Registering status values in your lookup list
You should the values you want to use to the LivingStatus field in your Lookup dictionary. There is no limit to the number of added, the simplest approach being to add one value to represent living and another for dead. However, you may wish to refine the codes for non-living, for example lost, disposed, etc. You can use codes or words up to 15 characters in length.

An example lookup with just two entries. To understand how to edit these values, refer to the section on editing your lookup lists.
Registering reasons for changing plant status

Separately to the living status codes themselves, you need to register the reasons for changing plant status. When editing plant status, often referred to as deading and resurrecting, the system enforces you to provide a reason. The reason you provide may be simply be ‘Deading’ and ‘Resurrecting’. On the other hand, you may wish to provide a more detail list of options.

Example entries added to the lookup list.

Confirming or changing plant status

The plant status field cannot be edited directly in the data grid. This is to enforce users to provide a reason for the edit. Thus, a small form is used to add the change reason and optionally, add some additional notes. It is also useful to record who made the edit and when. All changes to this field are logged as plant events, thus keeping a record of all status changes made to a given plant. To edit the status, you can:

- use a lookup in the data grid field;
- use the option provided on the Plant Form;
- use the Dead/Resurrect tool on the main Collections menu.

Each of these options leads to the same tool to edit plant status. However, when accessing the tool from the plant form, you can only edit the current plant record. Accessing the tool using either of the other options allows you to edit the current or all tagged records.

The Plant Status option on the main Collections menu.
In this database, the status codes used are L for Live/active and D for dead/inactive. You can apply a change to a single record or skip through all tagged records. When editing tagged records, you can set the status change reason for each plant.

You can also use this option to confirm plant status. If the plant status is not edited, the Change button stays as Confirm. A plant status event confirm event is added.

All plant status changes are recorded as plant events. The Events tab on the plant form can be set to show status changes only.

Plant stock quantities and adjustments

Plant stocks refer here to the quantity of individual plants for a given Plant ID rather that the number of plants in an accession group. A single Plant ID may refer to a group of plants which may subsequently be split up and planted out to different locations, thus receiving their own plant IDs. Some plants may also be distributed in a transaction to another garden or institution. Alternatively, plant stock levels may be adjusted for other reasons such as death or loss.

Plant stock data fields

Plant stock quantities are stored in the plant table fields:

- Initial Stock: refers to the initial number of plants represented by a single plant ID record
- Stock Removed: the amount a stock deducted in one or more activities (splits, transactions)
- Remaining Stock: a calculated field based on the above fields.
Column selection in the plants table with a filter on ‘stock’.

A series of plant records showing stock levels with a filter set to initial stock > 5

Manually adjusting stock levels
You may need to manually adjust stock levels following stock checking. This is done using the Stock Check option on the Collections Toolbar.

Reasons for altering stock levels can be entered. You can process a series of tagged records. All adjustments are added to the plant events table. The adjustment reason can be free text or selected from a list.

Note that you can add free text to the Adjustment Reason if the Management custom field lookup field setting is not set to Must Choose. If you use Append Mode, you can add multiple reasons.

Adding stock adjustment reason lookup values
To add a list of stock adjustment reasons and thus allow selection from a drop-down list on the adjustment form, select Management > Lookup Fields > Add. For the data Type, select ‘System’ and choose the Column ‘StockChangeReason’. You can manually add reasons here. Alternatively, using the Management menu Import from Excel option, you can import the reasons from an Excel file (see below).
Sample Excel file listing reasons for plant loss or stock change. Lists like these can easily be imported to your custom lookup lists using Management > Lookup Fields > Import from Excel.

Plant locations in garden

A description of plant location data is provided in the Garden Areas and Locations section.

Moving tagged plants

To change the location of a single plant, you can simply edit the location data from the plant table grid or form. To move multiple plants from one location to another, it will be quicker to tag the plants to move and then select the option Tag-> Move... on the main Collection toolbar.

The tag -> Move option is only enabled if one or more plant records is tagged.

An example plant move form. When plants are moved, the Tag is updated to ‘M’.

Managing plant identifications

Verification of names

Name verification is important as it provides visible details about when a plant identification was verified – together with the quality of the verification. Verifications vary in their reliability, for example, they may be based on sterile material rather than fertile.

Verifications are added as plant events. The most recent verification record is also added to the plant table itself as shown below:
All verifications are added to the plant events table and can be viewed from the plant form:

Note that the Events tab has the option to restrict the event list to Verifications only.

Setting up the events lookups for verifications
In order to use the verification system, you must set up the plant event lookups following the pattern below. You can change all the values except the EventType must be ‘Identification’.

<table>
<thead>
<tr>
<th>LookupValue</th>
<th>ParentCategory</th>
<th>FieldName</th>
<th>SortOrder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Identification</td>
<td>EventType</td>
<td>1</td>
</tr>
<tr>
<td>Full Verification</td>
<td>Identification</td>
<td>EventGroup</td>
<td>1</td>
</tr>
<tr>
<td>Partial Verification</td>
<td>Identification</td>
<td>EventGroup</td>
<td>2</td>
</tr>
<tr>
<td>Sterile Material</td>
<td>Partial Verification</td>
<td>Event</td>
<td>1</td>
</tr>
<tr>
<td>No Specialist</td>
<td>Partial Verification</td>
<td>Event</td>
<td>2</td>
</tr>
<tr>
<td>Poor specimen</td>
<td>Partial Verification</td>
<td>Event</td>
<td>3</td>
</tr>
<tr>
<td>By specialist</td>
<td>Full Verification</td>
<td>Event</td>
<td>1</td>
</tr>
<tr>
<td>Unambiguous species</td>
<td>Full Verification</td>
<td>Event</td>
<td>2</td>
</tr>
</tbody>
</table>

Editing verifications
Verifications are done using the Verify Name… option on the Collections menu toolbar. If name verification status is changed, you can request new labels if required. The verification form also has a Change … option top right providing access to the name change form.

Changing identification

The identification (i.e. taxa name) of a garden plant is held in the parent Accession record. If an Accession has multiple plants cloned across a garden, these will have the same identification. If you edit the identification of an Accession record, this will change the name of all plants related to that Accession.

Within the plant table itself, there are further plant identification options. These allow you to:

a) Confirm a plant ID is correct (true to name).

b) Edit the name of the plant(s) belonging to the Accession. If there is more than one plant, they will all be changed.

c) Decide that a one or more plants linked to an Accession has/have the wrong name and separate it/these to a new Accession.

If a name is confirmed, a confirmation event is added to the plant Events table including the date and confirmation person. All plant events, including confirmations, are listed from the Events tab.
If changing a plant name, appropriate warnings are given if there is > 1 plant linked to the same *Accession*. If there are > 1 plants and you opt to split the *Accession*, a new *Accession* record is auto-added with the newly selected species name and the selected plant is linked to this new *Accession*.

Bulk name changes

In the event that a species name is changed in the main taxa table, this may require that one to many living collection *accession* records are also changed. The species change may impact on all or only some of the related accessions. For example, a species may become a synonym of another name or it may be split to different taxa.

To update *accession* records, open the living accessions table and select the **Bulk Name Changes** option on the Collections menu toolbar.

Bulk Name Change form

Using the options provided opposite the existing name, you can lookup the name to be changed, set that name to the name of the current accession record, and filter the accessions to the currently selected name.

After selecting the New Name, you can then select **Change** to update the accession identifications for all or tagged records.
A prompt asks you to confirm the name change.

When accessions are changed, the records are tagged ‘N’ and a determination record is added for each edited record. Also, the relevant plant records are tagged ‘N’ and a name change event is added to each plant. The plant record tags can then be used to control label printing as required. Plants are edited regardless of their living status.

Collecting vouchers from garden plants

Specimens may be collected from garden plants for reference, checking identification and for other research purposes. Links can be created between the garden plant and the Collection Event tables allowing you to track which plants have vouchers. Vouchers may be of any type (herbarium specimens, DNA, wood samples, fruit or flower specimens, etc). These links are cross referenced within BRAHMS.

A given garden plant may have many vouchers collected over time. The flowering and fruiting status of collections can be added, thus helping you to determine if further collections should be made.

Vouchers are linked to plants using options provided on the Living Collections Plant Form Identification tab.

The plant table and form showing the Identification > Plant Vouchers tab. This plant has 5 linked vouchers. Options are provided to Link and Unlink vouchers. In this example, a filter has been set on the calculated field #Voucher Total to show plant records with >= 3 vouchers.

Linking vouchers will open the form to locate a collection event. If the collection event has 1 or more linked specimens, these will all be added to the plant – voucher list.

Plant Location Summary

The field ‘Plant Locations Summary’ shows a list of all plant locations for the current accession. Although you can list plants on the plant form, this field is a useful guide to see where else a plant occurs in your garden.
The Plant Locations Summary field lists plant location codes (including subareas) for the current accession.

Last event/request date and edit category

The Last event/Request date and group fields are useful indicators of what a plant was last assessed. The ‘group’ refers to the group category of the event or request.

Filtering of the last Ev/Req. date may be a useful way to select plant for inventory checks.

Linking plants to a transaction

With the main plants table open, select Collections > Link to Transaction.
Using this form, you can select plant IDs one by one, to link to the selected transaction. You can select an existing transaction or add a new one. Using this form, you can deduct from plant stock using the Dispatch Quantity field. However, if you tick ‘This material in NOT plant stock’, the function does not deduct from plant stock. This may be appropriate when e.g. distributing seed. You can also auto-link all tagged records to a transaction. The restriction status of plant material is displayed on this form.

Calculated fields for plant records

The species and plant tables have a number of plant-related calculated fields refreshed using the **Recalculate** option on the Data Tools toolbar. As with all tables, you can either selectively add calculated fields using **Grid Tools > Manage Columns** or switch them all on using **#Calc Fields** on the Grid Tools toolbar.

An example in the main species table where the calculated fields #Living Alive is set to visible. This calculates the number of living plants per species. Calculated fields are updated using the **Recalculate** option on the Data Tools menu.
Sponsorship, commemoration and tributes

Individual plants can have commemoration texts added.

It would also be possible to design and save a data grid field view showing the relevant fields as shown here. This would allow sorting, filtering and rapid editing of these fields.

Tagging in the plant table

The use of tags in the plants table is fundamental to many operations. Tagging in general is described in the manual section on Tagging functions. A few example uses of tags are provided here.

Using tag groups with plant records

The Tag Groups function can usefully be used with plants to create groups of plants of special interest. Any selection of plant records can be tagged and this then used to create a named plant group.

Tagging plants based on tags in other tables

Another handy feature used throughout BRAHMS is the Tags > Transfer Tags tool which transfers tags from a table to any related tables. Thus, you may have a set of tagged records in the species table (perhaps restored from a tag group you have created such as ‘Native taxa’). You can then use Tags > Transfer Tags to copy the tags to all plant records of the tagged species. Read about transferring tags.
Creating a plant RDE file for the Gardens Mobile App

In the main plants table, tag the records you wish to send to BRAHMS garden app. This can be any group of plants. You may want to create more than one RDE file, for example one file per garden location. You have the choice of exporting existing events/requests for the selected plants - so that these can also be viewed in the app. Existing images are not exported. You can restrict existing events/requests by date range. You can also restrict plants to those with a status representing ‘alive’. If you have tagged one or more records in the garden localities table, you can also use the option to Export all plants of tagged locations.

Once created, the next task is to copy your RDE survey file(s) to your device.

For further information, refer to the garden app documentation.

Plant Events

Introduction

Living collection plant event records are used to record things that happen to plants from their accession through to death or disposal. Examples are plant status changes, plant movements, fertilizing, mulching,
making safe, spraying and tree surgery. You can also store observations such as flowering and fruiting times. As each event has a date, these can later be reviewed and used to analyse phenological and other patterns.

Events are stored in a separate file linked to the main plant file. A plant record may have many registered events, sorted chronologically. Although stored in a separate table, all events can be quickly listed from the main plant form.

The events table is often the largest and most actively edited table in the living collections module. The choice of which events to record is entirely a decision for each project.

Event categories and other fields

Events are categorised in a user defined, 3-level hierarchy:

PlantID	The event record displays some fields from the parent Plant file including the ID itself, the species location.
Event Types	This is the top grouping level – thus there will usually be a small number of entries. Examples are Inventory, Maintenance and Observation.
Event Groups	These are division of the main event types. Thus, for maintenance, you may have entries such as Fertilizer, Herbicide and Mulching
Events	These are the final category which would be, for example, the different types of mulching such as bark-chips, pine-needles or limestone.
Event Date	Separate into Day Month and Year fields.
Result	Where relevant, a text or numeric entry relating to the event, for example a measurement.
Event Person	Who carried out the event
Event Notes	Text description of event
Audit fields	Added by, Added When, Last edited, Last Edited by

Registering your event categories in the lookup list

Entries for all three levels should be registered in your lookup list

Sample lookup list entries for plant events.

Typically, the top-level Event Type will consist of a short list. One of the entries may be ‘Maintenance’. This is the top level in the event hierarchy. Note that the Field Name is set to EventType and there is no entry needed in the Parent Value field.
Event Groups are also registered in the look up list. Each entry has an Event Type as a parent. The parent event type is added to Parent Value field as shown above. The example here lists entries for ‘maintenance’. One of the maintenance-related entries is ‘mulch’. Note that for ‘mulch’, the Field Name is set to EventGroup and the Parent Value is set to ‘Maintenance’. Finally, the entries for the field Event are listed, here for ‘mulch’. Note that the Field Name is set to Event and in this case the Parent Value is set to ‘mulch’.

This set up will then allow you to correct use the lookup options when adding and editing events.

Editing Plant Events

Events can be edited directly from the main Plant Events table opened using **Collections > Plant Events**.

Events can be added and edited directly in the events table. If you add a new record, you are prompted for the plant ID. Several fields from the plants table are displayed but cannot be edited in the events table.

Alternatively, you can edit events using the main plants table form - Events tab.

When using this form, events are listed for the current plant record and these update as you move through the data grid. You can add and edit events here too.

When editing events, the lookup option for the event entry uses a hierarchical value selector. The top Find option allows you to enter efficient strings and with some practice, you can minimise typing to locate the required entry. The example here uses ‘m’ to restrict to maintenance, ‘c’ to restrict to chemical and then ‘h’ to find herbicide. Clearly, how you search will depend on the values added to your look up list.
Creating an RDE table for plant events

While events can be added directly to the database, if there are many events to add, it will be faster to use an RDE file plant events file. This is a spreadsheet which can be edited, checked and then imported to your database. The process of using RDE (Rapid Data Entry) is described elsewhere in this guide.

There are two ways to create RDE plant event files:

a) Create a file directly in the RDE manager using Rapid Data Entry > Create new RDE file, choosing the category ‘Plant Events’.

b) In the main living plants table, use the tool Tag -> Events RDE which can be found on the Collections menu.

The advantage of using the collection tools option Tag -> Events RDE is that the RDE file is created pre-populated with the plant records you want to record data for.

- Open the main plants table using Collections > Plants (this assumes the collection category is set to ‘Living Collection’).
- Tag the records to include. Typically, this may be for a selected garden area. To do this, apply a filter for a selected garden area (or several garden areas) – and then use Tag -> Tag all.
- You can now use the Collection menu tools option Tag -> Events RDE.

![Image of RDE file creation](image)

Use Tag -> Events RDE to create an RDE file pre-populated with the plant records you want to work with. This file can then be edited with the event details (observations, maintenance, annotations, status checks, etc.). After checking, the file can then be transferred to BRAHMS.

Transferring Event RDE files to BRAHMS

When you import a plant events file to BRAHMS, the new events will be added and linked to the correct plant records based on the Plant ID. If the Plant ID is not located, the event record will not be imported.

As well as adding events with the event type, group and event, RDE event files can also be used to:

- Change plant status (Alive, Dead. Lost, etc.)
- Change plant identification
- Indicate that a label is required

Importing Plant Events from Excel

Event data for plants already stored in BRAHMS can be imported to the events table directly from an Excel spreadsheet. The events can be of any type/group. Ideally, the event hierarchy options you use will the same as those registered in your BRAHMS lookup list.

To match to plant records in your database, the excel table must include either the plant record GUID or the Plant ID. If a match cannot be made on one of these columns, the data cannot be imported.

![Image of Excel import](image)

The Import Events option is found on the Collections toolbar when the Plant Events table is opened.
The Import Wizard allows you to match all the fields that you wish to import. In the above example, there is no GUID so matching will use the Plant ID.

The pre-import screen showing that one plant cannot be located and thus, the data for that record will be ignored.

Plant requests

Requests (plant actions requested) can be logged in the plant request file. Request lookup selections are managed in the same way as events, replacing the Field Name as appropriate. As the lookup lists for requests and events may differ, these are added to the lookup list separately. Requests can be edited directly from the main Plant Requests table opened using Collections > Requests. Alternatively, you can edit requests from the main plants table using the Requests tab on the form.
Registering and producing plant labels

Introduction

The following guide entry applied to BRAHMS v 8.6 onwards.

As a rule, two main categories of labels are produced in botanic gardens: engraved labels and those printed on special paper/plastic for potting and similar. Both of these often on specialised printers. Both categories may have several sub-types based on the precise type of label needed, including label size. This section discusses aspects of label production from the initial request to the final production.

Labels may be produced for existing garden plants and/or for species that do not necessarily have plant records. Thus, garden labels can be created directly from the living collections plants table and/or the main species table. Clearly, in the latter case, there will be no reference to accession or plant record details.

Key points

- Using the in-built reporter, labels can be printed directly from BRAHMS or saved to one of several formats such as Excel or PDF. These reports will be based on one or more report templates that you design.
- Labels can be processed for plants and or species. For example, you may want to print labels for display plants that are never accessed to the main accessions/plants tables.
- Data for labels can alternatively be exported directly to Excel, based on one or more data grid column views. Such exports may be required for certain types of engraving printers.
- You can add as many label categories as you need, each associated with a report template or a data view.
- Labels are often required, not only for new plants but when plants change name, have their name verified, or are split to new areas. The tools that offer these functions in BRAHMS include a direct link to label production for the relevant plants.
- Labels can be printed directly or alternatively, added to a central label request table. Direct printing bypasses the label requests table. The enabling of direct printing is an option when saving a label template.
- There is a concept of ‘deferred label printing’ which is used when the print job has to take place after a certain action is completed. For example, if you are adding new plants or splitting stock, the new Plant IDs must be created before the labels can be produced.
- Permissions can be assigned on a user-by-user basis as to who is allowed to request labels. Thus, a garden with many horticultural staff may wish to restrict this function to selected users and thus more tightly control the build-up of costly engraved label requests.
- Labels added as requests are processed from the dedicated request file and their status changed from pending to processed.

Registering your label categories

Species or plants
As a first step, you need to register your categories of garden label in the Labels table. You can select:

- **Taxa > Species** – then on the Taxa toolbar and select Label Templates... – or
- **Collections > Plants** (when the category is set to Living Collection) and then on the Collections toolbar select Label Templates...

These options lead to the same Label Manager form.
Label Manager for species and plant records.

Using the Label Manager, you can create, edit and delete label templates; import templates from existing report (.mrt) files; export label templates to share with other projects. Access to the Label Template form is permission controlled.

Label templates are stored within your database and thus, there is no need to locate external .mrt report template files (as there was pre v8.6) nor set any report folder locations.

Create new label template

If you create a new template using the Excel output option, you will be asked to select a saved data grid view file.

Select any saved column view (.dbc) file to associate with the Excel export template entry.

When creating a standard report template, you can optionally refer to data in other tables.
Enable direct print

On the Label Manager form, the option **Enable direct Print** can optionally be selected. If selected, users will be able to by-pass the label requests table and print directly using the label print options (see below). If this option is not selected, the label print task is directed to the label requests table.

When Direct Print is enabled, a user can print labels directly – rather than being forced to submit a label request.

Excel Output

If Excel Output is selected, the label requests do not use a standard report template. Rather, when printed, the data are exported to an Excel table based on a saved data grid view. You can register the saved view in your database in the same way a report template is registered using the option provided.

Editing a report template

If you have created a label entry template as a standard report template (not Excel Output), the **Edit Template** option opens the report editor. If you have created a label entry template as Excel Output, the **Edit Template** option allows you to select a saved grid view (.dgc) file.

Reporting design options are integrated with BRAHMS and are described in the [reporting section](#) of this guide.
You can design multiple reporting templates for different categories of label and either print directly or export to different formats.

Producing plant labels

Labels can be made directly when adding new plants and also when using various tools on the Collections toolbar such as the Print/Req. labels, Identification and Move/Split, all of which include options to print/request labels.

Your registered label categories are listed on all forms that have a link to label printing including Print/Req. labels; Add Plants; and Name checks/Changes.

Processing label requests

When labels are requested, they are added to the plant requests table. The requests table can be opened in a special mode for processing label requests.
Pending label requests are displayed in this table together with the label type and quantity.

To process these pending requests, select the Print labels... option.

The print option asks you to select which category of label to print.

Permission settings

A permission setting is provided on the User Access and Permissions form, Specific Actions tab to allow a user to request labels.

If this option is not set, users will be able to use direct label printing but will not be allowed to add requests to the label request table.
Index Seminum

Introduction

For botanic garden projects, it is now possible to develop seed catalogues directly from BRAHMS. The Index Seminum catalogues can be built up based on accessioned and non-accessioned material for wild or cultivated plants. Facilities are provided to create named catalogue entries, often one per year, with descriptive data held under user-definable headings. An example may be your local growing and climate conditions. You can then link seed entries based on your current garden accessions, collection events and/or manually add details for non-accessioned material. Full reporting options are provided enabling you to format catalogue text headings and your selected seed entries, sorted and numbered appropriately. Reporting can be used to generate PDFs and other output formats.

Adding a new Index Seminum

Select the Index Seminum option on the Collection menu. After adding a new record, here, you can add in the Garden name, the index Year and Title, and up to 5 text headings and values. For example, you may want to add text describing the growing conditions and climate of your garden; special notes about the catalogue for the current year; contributors; and any other relevant details. All of these text headings and values can be formatted into your Index Seminum report.

The table also has a form with tabs for the above data and a separate tab to list, add or edit seed entries.

Adding Index Seminum seed entries

Seed entries can be added directly to the above form using the various lookup options provided. Note that you can add seed entries that are not accessioned in your database. For example, you can add an entry by looking up any species name registered in your species list.

Typically, you will want to generate Index entries based on your existing Living Collection Accessions entries. To do this, tag the relevant Accession records and then choose the option Collections > Tagged -> Index Seminum.

You can also use this Collections > Tagged -> Index Seminum from the Collection Events table. This would be useful if you have wild collected but non-accessioned seed to add to your index.

Renumbering index entries

On the main Index Seminum form, use the Renumber option to renumber the entries sorted by family + species name.

Index Seminum outputs

All data from the index can be exported to CSV/Excel in the normal way. However, you can also design report templates that format the index and index entries as you wish and save these reports to PDF, HTML, Word, etc. as well as printing them directly.
Images and Documents

Images

Images can be linked directly to species, garden plants or indeed, to any other database record. Physical image files can be stored in any accessible location. You can also link images as URLs. Images can also be added via RDE and you can import images from Excel. For more details, refer to the image section of this guide.

Image management is discussed in the image section.

Documents

Multiple documents of any type can be linked to taxa, accessions, plants or any record in BRAHMS. Examples are material transfer agreements, collection permits or perhaps a video or slideshow linked to a botanic garden greenhouse record. Refer to the section on linking documents.

Adding phenological observations

Introduction

The phenology options enable you to record phenology events for individual plant records. These are indicated by adding the present or absence of a selected phenology event by date. Any phenology event can be registered, examples being flowering, fruiting, seed set and leaf flush. Phenology events can then be summarised by month.

Setup options

Register event lookup options

Events in BRAHMS are stored in a 3-level hierarchy: EventType, EventGroup and Event. While not strictly necessary to register event look categories, we suggest you add EventType and EventGroup as described below.

- **EventType**: This value should be set to Observation.

- **EventGroup**: This value should be set to Phenology with parent value Observation.

- **Event**: Event values are automatically added when you add phenology traits on the Plant Form (see below).

Permissions

Users can be given permissions on System > Manage Users and Permissions as follows:

- Can add phenology observation event traits directly from the Plants (Living Collection) form?
- Can delete phenology observation event traits directly from the Plants (Living Collection) form?

The permissions dictate whether a user can add or remove phenology traits. Any user with access to the living collections module can add/edit phenology data but not necessarily add/delete traits.

Adding and deleting phenology events/traits

To add a new phenology event, choose the date and select Present/Absent for the listed trait, optionally adding a short note. All measurements can be added as either Present or Absent. All events, including phenology events, are deleted from the plant form main Events tab. A user with the appropriate permission can add a new trait in the New Trait text box.

Traits can be added and deleted from this form.

Summaries and charts

All phenology observations for a given plant can be listed from the Observations tab. These observations are stored as plant events and thus, can also be listed on the events tab together with all other events for the plant record.

Observations can be listed and viewed graphically.
Mapping plants

Mapping garden plants and their origin

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#gardenmapping

Mapping the location of garden plants only requires that your plant records have a latitude/longitude value. These can be entered in different units but are always stored in decimal degree format, negative for South and West. You can store these data with up to pin-point accuracy.

Using the internal ArcGIS mapper, you can map the plant locations, dynamically linked to the data grid. These mapping options are discussed in the section on the ArcGIS internal mapper. You can also dynamically map your data to other GIS including QGIS, ArcMAP and DIVA GIS.

You may have your own garden base maps to add as map layers – or use map layers available online including world imagery maps. If your map data are available on a map server, you can also add your own map to the ArcGIS API.

In this example from The Morton Arboretum, a filter is set on garden location ‘Morton East Woods’. The Betulaceae are tagged in red – and the map is set to map Tag colours.
As with other map points, garden plant map points can be added or edited using the Map Point Editor. This function is described in the section Adding and editing map points.

A right-click on the map moves the point and adjust the stored data point.

Exporting to Excel and CSV
Data from any table are easily exported to Excel or CSV files.

Video: exporting to Excel/CSV

Tagged records are easily opened in Excel or as CSV.
Plant Requests, Scheduling and Ordering (RSO)

Introduction to Plant Requests, Scheduling and Ordering (RSO)

Succulent, Rudbeckia and Paphiopedilum production at CBG. Images provided by J. Hutchins, Chicago Botanic Garden (CBG).

The RSO module has been developed in collaboration with Chicago Botanic Garden.

The RSO options are used to manage requests from curators for new plants, be these seasonal/display or to be accessioned. Accessioned plants are registered in the Living Accessions table while seasonal plants are not.

Plant requests are submitted to a central RSO table where they can subsequently be processed in stages through to production/propagation/dispatch and optional garden accessioning.

As discussed below, there are a number of processing stages from the request submission through to the final delivery of the requested material.

Those responsible for scheduling and ordering the requests are able to optimise delivery dates to feed into propagation or production to meet required garden delivery dates. A curator may request a species that does not exist in the institutional species list - and this would require addition by someone with authority to do so.

It becomes possible to streamline the ordering process by combining requests for different species and from different curators into single orders form a selected vendor.

<table>
<thead>
<tr>
<th>Action</th>
<th>RSO Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request is rejected by management</td>
<td>Rejected</td>
</tr>
<tr>
<td>Request is accepted</td>
<td>Pending</td>
</tr>
<tr>
<td>Species are checked and confirmed</td>
<td>Approved</td>
</tr>
<tr>
<td>Vendors are checked and confirmed</td>
<td>Approved</td>
</tr>
<tr>
<td>Schedule date selected</td>
<td>Scheduled</td>
</tr>
<tr>
<td>Order date selected</td>
<td>Ordered</td>
</tr>
<tr>
<td>Receive date selected</td>
<td>Received</td>
</tr>
</tbody>
</table>

Summary of RSO status stages.

The RSO table and manager

Introduction

The main RSO table is opened using Collections > RSO when in living collections mode. Note that by default, archived RSO records are hidden.
The main RSO data grid.

The RSO grid can be edited as with any other data grid. Some fields are read only. The RSO has a special Manager which is opened using the Show/Hide RSO manager option.

Linked Propagation-Production records

When new RSO records are created, a record is automatically added to the Propagation/Production (PP) table. This is linked to the RSO record with the same RSO/Propagation number. This provides a close integration between these two tables - and it also means that certain PP fields can be viewed and edited from the RSO table. These are mostly ‘forecasting’ (see below) fields.

Data fields that are visible in the RSO table but are stored in the PP table can only be edited in the RSO table via the RSO Manager. In the RSO data grid, these PP fields are read-only.

Plant requests – RSO data capture using Rapid Data Entry (RDE)

Curators will normally submit plant requests in batches using RDE files. RSO RDE files are created and edited as are all other categories of RDE file. The following data fields are available in the RDE table for RSO submissions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RecordId</td>
<td>Calculated RDE record number – not for editing</td>
</tr>
<tr>
<td>GardenName/Code</td>
<td>Lookup to your garden name/code</td>
</tr>
<tr>
<td>Requested By</td>
<td>Person ordering plants – lookup to name strings table</td>
</tr>
<tr>
<td>RequestedForGardenLocation/Area</td>
<td>Requested destination of requested plants</td>
</tr>
<tr>
<td>GardenProjectName</td>
<td>Link to Garden Projects table (see below)</td>
</tr>
<tr>
<td>IsAccessionMaterial</td>
<td>Is the material to be accessioned rather than seasonal/display only?</td>
</tr>
<tr>
<td>IsPropagationMaterial</td>
<td>Is the material going to require propagation?</td>
</tr>
<tr>
<td>IsWildCollected</td>
<td>Is the material wild collected?</td>
</tr>
<tr>
<td>RequestedMaterial</td>
<td>Bulbs, Seed, Plants, etc.</td>
</tr>
<tr>
<td>RequestedSpecies</td>
<td>Requested Species – look up list or added as new</td>
</tr>
<tr>
<td>RequestDeliveryContainer</td>
<td>Lookup to container categories (see below)</td>
</tr>
<tr>
<td>RequestDeliveryPlantsPerContainer</td>
<td>Requested plants per container (normally 1)</td>
</tr>
<tr>
<td>RequestDeliveryContainerQuantity</td>
<td>Request number of containers</td>
</tr>
<tr>
<td>CalcRequestDeliveryPlantsQuantity</td>
<td>Calculated field based on containers x plants per container</td>
</tr>
<tr>
<td>RequestedForDate</td>
<td>The date the material required for final delivery to garden</td>
</tr>
<tr>
<td>RequestVendor</td>
<td>Requested vendor (may be adjusted by ordering team)</td>
</tr>
<tr>
<td>RequestItemNumber</td>
<td>Vendor catalogue number if known.</td>
</tr>
<tr>
<td>RequestUnit</td>
<td>Unit name e.g. Each; One L pot; Pack of five,</td>
</tr>
<tr>
<td>RequestUnitCost</td>
<td>Unit cost</td>
</tr>
<tr>
<td>RequestUnitQuantity</td>
<td>Requested number of units</td>
</tr>
<tr>
<td>CalcRequestItemTotalCost</td>
<td>Calculated cost of item</td>
</tr>
<tr>
<td>ResearchCode</td>
<td>Optional code for research of budget line</td>
</tr>
<tr>
<td>Comments</td>
<td>Additional notes</td>
</tr>
</tbody>
</table>

Importing RDE files

Once an RDE file is prepared, the curator responsible (or another designated to do so) will proceed to upload the data from RDE to the central RSO table in BRAHMS where the request will be processed by the plant scheduling/ordering staff.

RDE file uploading is prevented if any of the following fields are null or have empty string values:
Import analysis indicates how many new RSO records will be added. As part of the RDE import, new RSO/Propagation numbers are auto-assigned based on your configuration settings (see System > Options > Living Collections > Production/Prop). This same number is carried through to the propagation-production table. Note that there is an optional Auto-Archive RDE files on import feature.

Once imported in this way, the records in the RSO table are assigned a status ‘Pending’. A key next step is to check the species names as requested and approve the requests.

Request Approval

Species checks

The next stage is Request Approval. Before approving submitted and accepted records, the species names must be checked using the Species Auto Match tool. This tags with “!” any taxa that cannot be located in the main database taxa table. This may be an incorrectly added species or it may be a species new to the institution/botanic garden.

The RSO manager Request Approval tab. Note that the Auto-match result is given in summary (e.g. ‘0 unmatched species’) next to the auto-match button. In this case, all species have been located in the species table.

When one or more species cannot be located, there are three choices:

- Leave the record unedited and thus it cannot be further processed. You may choose to delete.
- Edit the species name by selecting a correct name from the species table using the option provided.
- Add a new species to the taxa table using the option provided. Note, you could, if needed, go to the main species table to further checks/add new record directly there – and then return to the RSO to re-run Auto-match.
When adding a new species, BRAHMS will parse out the submitted name as best it can. The name can then be edited and added to your main species list.

Request Approval

Once the names are checked, you can then ‘Approve’ the requests using the options provided. Approved names have their status changed to ‘Approved’ and they will disappear from the main data grid. Once the RSO Manager is closed, these records will be visible again.

Also, at this stage, when records are approved, species default data, if available, is pulled into PP forecast fields. Default species propagation values are discussed below.

Forecasting

Forecasting – Production

Propagation plug trays at CBG. Knowing space requirements in advance (forecasting) can be critical for planning. Image provided by J. Hutchins, Chicago Botanic Garden (CBG).

Forecasting data, stored in the PP table, are visible in the RSO table. In RSO, they can only be edited via the manager. These fields are generally used to help order planning and scheduling. For example, it may be essential to have an advanced idea of the growth space, growth medium and temperature requirements for incoming plants. These can be used to determine what greenhouse space will be used for a crop. For example, a crop needing 60/55 day/night will need to go in a different house than one requiring 75/70.
The top part of the Forecasting form shows the Requested data. The main part of the form shows the Prop-Prod data, auto-filled with species default data values. The data shown above are fictitious.

Data in the Forecasting form can be edited. The edits made here can be saved and copied to one or more other records using the Tick boxes and the Save options. For example, the Production Growth Media may be edited from the default in one record – and this edit applied to other records. Note that many of the values on this form will be provided from standard lookup lists.

Forecasting - Propagation

This is similar to the above form except that the data are limited to records being propagated and the form fields are for propagation data.

Order scheduling

Vendor matching

On the Order Scheduling tab, the task is to run the Vendor Auto-match tool and to add and/or adjust vendors as needed. The vendor matching uses the ‘Requested Vendor’ and adds the result to the ‘Order Vendor’ field.
The Auto Match vendors tool checks the requested vendor names and marks up new/unknown entries.

Note that a Filter tool is available to filter the RSO records to unmatched vendors. To filter on any selected vendor, use the grid filter row. There are also tools to copy Vendor to tagged or to all (within a filter) records.

In order to edit fields such as Order Item No, Order Unit Quantity and Cost, the data can be edited directly in the data grid when in edit mode.

Order adjustments

Various features are provided to help with the ordering process. For example, at this stage, the selected species can be adjusted.

Scheduling Orders

At this stage, the task is to add the order dates. The date added can be applied to the current record only, tagged records or all records. Bear in mind, filters are respected. The RSO status is changed to ‘Scheduled’.
Ordering and Receiving

Ordering and receiving

Order dates can be adjusted record by record, applied to tagged records or to all records. The RSO status changes to ‘Ordered’.

When received, the records can be marked accordingly and the RSO status changes to received.

Receiving Accessioned material

The option here is used to auto-create new Accession records for material indicated as ‘Is Accession Material’.

Re-ordering

Material can be re-ordered using the options on the Reordering tab.

Various options are provided to copy data when re-ordering.
RSO Table Field List

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RsoNumber</td>
<td>Char -25</td>
<td></td>
</tr>
<tr>
<td>RSOStatus</td>
<td></td>
<td>RSO Status is a fixed list of options built into BRAHMS</td>
</tr>
<tr>
<td>RequestedBy</td>
<td>Char -128</td>
<td>Name of person requesting a plant</td>
</tr>
<tr>
<td>RequestSpecies</td>
<td>Char -255</td>
<td>Requested species (including infra names, cultivar, etc)</td>
</tr>
<tr>
<td>RequestVendor</td>
<td>Char -128</td>
<td>Preferred vendor</td>
</tr>
<tr>
<td>RequestMaterial</td>
<td>Char -50</td>
<td>Requested material e.g., seed, plants, cuttings</td>
</tr>
<tr>
<td>RequestItemNumber</td>
<td>Char -50</td>
<td>A catalogue number</td>
</tr>
<tr>
<td>RequestUnit</td>
<td>Char -50</td>
<td>Requested supplier product catalogue units, could be ‘each’, ‘2 litre pot’, etc.</td>
</tr>
<tr>
<td>RequestUnitCost</td>
<td>Dec 8,2</td>
<td>Cost per unit</td>
</tr>
<tr>
<td>RequestUnitQuantity</td>
<td>Int</td>
<td>Number of units to order</td>
</tr>
<tr>
<td>CalcRequestItemTotalCost</td>
<td>Dec 8,2</td>
<td>Total cost of requested item</td>
</tr>
<tr>
<td>RequestedForDate</td>
<td>Date</td>
<td>Date material required to be ready/delivered</td>
</tr>
<tr>
<td>CalcRequestedForWeekNumber</td>
<td>Int</td>
<td>Week number of delivery</td>
</tr>
<tr>
<td>RequestedForGardenArea</td>
<td>Char -100</td>
<td>Material requested for where?</td>
</tr>
<tr>
<td>RequestedForGardenLocality</td>
<td>Char -100</td>
<td>Material requested for where?</td>
</tr>
<tr>
<td>RequestDeliveryContainer</td>
<td>Char -50</td>
<td>Requested delivery container</td>
</tr>
<tr>
<td>RequestDeliveryPlantsPerContainer</td>
<td>Int</td>
<td>Requested number of plants per container, typically 1</td>
</tr>
<tr>
<td>RequestDeliveryContainerQuantity</td>
<td>Int</td>
<td>Requested number of containers</td>
</tr>
<tr>
<td>CalcRequestDeliveryPlantsQuantity</td>
<td>Int</td>
<td>Calculated total plants (containers x plants per container)</td>
</tr>
<tr>
<td>RequestComments</td>
<td>Char -255</td>
<td>General comments for this request</td>
</tr>
<tr>
<td>IsAccessionMaterial</td>
<td>Bool</td>
<td>Is this material to be accessioned?</td>
</tr>
<tr>
<td>IsWildCollected</td>
<td>Bool</td>
<td>Is this material wild collected?</td>
</tr>
<tr>
<td>IsPropagationMaterial</td>
<td>Bool</td>
<td>Is the material to enter propagation?</td>
</tr>
<tr>
<td>RequestApprovedBy</td>
<td>Char -128</td>
<td>Request approved by who</td>
</tr>
<tr>
<td>RequestApprovedOn</td>
<td>Date</td>
<td>Date of request approval</td>
</tr>
<tr>
<td>OrderItemNumber</td>
<td>Char -50</td>
<td>Actual ordered item number (catalogue number)</td>
</tr>
<tr>
<td>OrderUnit</td>
<td>Char -50</td>
<td>Product catalogue unit ordered</td>
</tr>
<tr>
<td>OrderUnitCost</td>
<td>Char -50</td>
<td>Cost per unit</td>
</tr>
<tr>
<td>OrderUnitQuantity</td>
<td>Dec 8,2</td>
<td>Amount ordered</td>
</tr>
<tr>
<td>CalcOrderItemTotalCost</td>
<td>Dec 8,2</td>
<td>Total cost</td>
</tr>
<tr>
<td>ScheduledOrderGroup</td>
<td>Int</td>
<td>A numeric field that may be used to help group orders</td>
</tr>
<tr>
<td>ScheduledOrderDate</td>
<td>Date</td>
<td>Scheduled date to order the item</td>
</tr>
<tr>
<td>OrderedBy</td>
<td>Char -128</td>
<td>Who ordered</td>
</tr>
<tr>
<td>OrderedOn</td>
<td>Date</td>
<td>Date of order</td>
</tr>
<tr>
<td>ReceivedBy</td>
<td>Char -128</td>
<td>Who received</td>
</tr>
<tr>
<td>ReceivedOn</td>
<td>Date</td>
<td>Date of receipt</td>
</tr>
<tr>
<td>Comments</td>
<td>Char -max</td>
<td>Further general comments</td>
</tr>
<tr>
<td>IsArchived</td>
<td>Bool</td>
<td>Is the RSO record archived?</td>
</tr>
</tbody>
</table>
Production and Propagation

Introduction

Production and propagation data are stored in a single table which can be accessed and updated via the data grid or forms. As with all other tables, the fields displayed in the data grid are configurable. In this table, as there are many fields, using column selections may be especially important when working in the grids.

The BRAHMS production propagation components deal with accessioned and non-accessioned (seasonal) material. Accessioned material is assigned an accession number and maintained in the system with garden plant records added as and when appropriate. Non-accessioned (display/seasonal) material is managed via the Request, Scheduling, Ordering (RSO), Production/Propagation (PP) and dispatch stages. While non-accessioned records are maintained in the system, beyond dispatch to display, no further records are kept.

Prop-Prod records can have associated event records. These are similar to Plant event records. These events keep track of all actions for a given production or propagation line. Event lookups can be configured.

Many fields have separate values for Propagation and Production, for example, PropLocation and ProdLocation. A full list of fields is provided in this guide.

Propagation data primarily refer to the management of data for seed, cuttings and grafts. Each of these has a special set of fields and related form sections.

Requests for new plants made by curators, including their Scheduling and Ordering is managed by the RSO module. Although this is separate to the Prop-Prod module, there are links between RSO and production/propagation. These links are explained in the separate RSO manual section.

Trial numbers

The prop-prod table has a field called Trial Number. This field is used to indicate a sequence of propagation entries for the same Accession. For example, if material is propagated from seed, there may be several approaches used to see which method is the most successful. The trial number is auto incremented when adding new records. This field can be ignored if not required.

Plant Production

Introduction

Plant production deals with the growing on of plants from an initial stage until they are ready to be dispatched to the appropriate garden areas. For some species, the plant production period maybe relatively short. But for others, production may last for several years and involve several containers and/or location changes per plant. Plants in production are normally assessed and counted on a regular basis.

The plant production table and the associated form are opened by select Collections > Production/Propagation. This assumes your collection data category is set to Living Collection. As this table includes many fields also covering propagation, when using the data grid, it’s important to set up and save one or more field views, using the standard tools to do so.

Adding new production/propagation records

For non-accessioned material, prop-prod records are added via the RSO module. For accessioned material, prop-prod records can be added via the RSO module or directly to the prop-prod table using the Add option. When adding a record directly, you must choose an Accession or Plant ID as prompted.

Trial numbers

The prop-prod table has a field called Trial Number. This field is used to indicate a sequence of propagation entries for the same Accession. For example, if material is propagated from seed, there may be several approaches used to see which method is the most successful. The trial number is auto incremented when adding new records. This field can be ignored if not required.

Plant Production

Introduction

Plant production deals with the growing on of plants from an initial stage until they are ready to be dispatched to the appropriate garden areas. For some species, the plant production period maybe relatively short. But for others, production may last for several years and involve several containers and/or location changes per plant. Plants in production are normally assessed and counted on a regular basis.

The plant production table and the associated form are opened by select Collections > Production/Propagation. This assumes your collection data category is set to Living Collection. As this table includes many fields also covering propagation, when using the data grid, it’s important to set up and save one or more field views, using the standard tools to do so.

Adding new production/propagation records

For non-accessioned material, prop-prod records are added via the RSO module. For accessioned material, prop-prod records can be added via the RSO module or directly to the prop-prod table using the Add option. When adding a record directly, you must choose an Accession or Plant ID as prompted.
Adding a record directly to the prop-prod table for an existing Accession as type cuttings.

Requested plant delivery

A number of fields are associated with the plant production request. Aside from the actual species name itself, these include the requested delivery date/week number; delivery size/container size; the quantity of plants required; requested by and for who. These apply to both production and propagation.

The Production Form

The main form provides a summary of Accession data (for accessioned material) in top section. Below this, the initial Request details are provided in a collapsible section. Below this are the main tabs for Production, Propagation, Events, Accession and Search.

<table>
<thead>
<tr>
<th>Tab</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>Add/edit Actual and Forecasted plant Production details.</td>
</tr>
<tr>
<td>Propagation</td>
<td>Add/edit Actual and Forecasted plant Propagation details.</td>
</tr>
<tr>
<td>Events</td>
<td>Changes made to PP values are added as events.</td>
</tr>
<tr>
<td>Accession</td>
<td>Options related to accessioned material including listing plants.</td>
</tr>
<tr>
<td>Search</td>
<td>Locate records in the PP table.</td>
</tr>
</tbody>
</table>

Many of the fields on the production tab will have drop-down lookups. The location field headings are adjusted in your setup. Note that each project should populate their own lookup dictionaries.
The ‘Current Qty’ option opens a small form to update the plant quantity and auto-adds the Last Checked date.

Actual vs Forecast fields

The production-propagation table includes a number of fields called *forecast fields*. During the plant scheduling and ordering phases, these fields are optionally added as part of the process of predicting and recommending the resources and conditions that will be likely required to produce the requested plants. For example, for planning purposes, it is useful to know how much and what type of growing space and containers will be needed in advance. The forecast field values may be adjusted for planning purposes and are then copied to the actual production fields when the material enters production/propagation.

Production - Forecast tab

The forecast field values can be transferred to Current using the option provided.

Navigation and locating records

By selecting the navigation tab, you can filter to and locate records using the Propagation or Accession number. The ‘trial number’ can also be used.

The navigation tab allows you to locate PP records quickly. Filter selections on this tab are automatically reflected in the main data grid.
Events tab

Each production record can have one to many events added over time. These can be added manually but also, events are auto-added when the production stock, location, container or temperature changes are edited.

Plant production events are auto-added when form edits are made. They can also be manually added and edited.

Accession tab

Propagation records tab

The Propagation records sub-tab lists all Prop-Prod records for the current accession.

Plant List tab

The Accession > Plant List tab lists all plants for the current Accession – together with a selection of configurable fields.
Using the options on this tab, you can:

- **Edit the status of a selected plant record.** This may include a plant assigned to a Propagation area. Note that a summary of plants and their status is also provided.
- **Create a new production or propagation entry for the current accession.** This will auto-link the new PP record to the accession.
- **Change the Status of the Accession record itself.** For example, if all plants in production/propagation are dead – and there are no living plants for this accession elsewhere, the accession status can be set to dead/inactive (or as used in your setup).

Accession tab

This provides a summary of the current accession record with an option to go to the record in the Accession table.

Plant Propagation

Introduction

New plant accessions (seed, bulbs, cuttings, living plants or another types of propagule) may be planted directly into a collection in the garden or kept in propagation to grow on before moving to a permanent garden site. Plant material, clonal or otherwise, may be collected from existing garden plants to further propagate.

Seed propagation

For seed propagation, the form provides a way to keep track of how seed is processed and the germination/emergence success rates. The number of days between stratification treatments and the % germination success are auto-calculated.

The result % calculation is the % of the emergent seeds compared to the initial quantity (=seed sown).

Cuttings propagation
Some of the fields provided for cuttings.

Graft propagation

![Graft propagation table](image)

Some of the fields provided for grafts.

Extending the propagation table structure

Using the **Grid Tools > Manage Columns > Custom Columns** option, you can extend the structure of the main propagation table, adding custom fields as needed.

![Column Management](image)

A text field ‘My Propagation Notes’ has been added and positioned below the field Propagation Number.

Propagation to plants

From the propagation table form, when in **Edit** mode, you can **Add plants** to the garden. This function uses the standard plant addition form which allows you to choose the number of plants, their location(s) and label requirements. When plant records are added, the Propagation Number is added to the plant record(s) – providing a link from the plant back to its propagation origin.
Generating new plant records directly from the propagation table. The Propagation Number is added to the main plants table, providing a link back to the origin propagation record.

Adding propagation records from the plant table

You can also add propagation records directly from the plant table. This would be used when gathering seed, cuttings or other material directly form plants in your garden. In Edit mode, select the Propagation tab on the plant form.

This option allows you to select the propagation material e.g. cuttings and then opens the main propagation form. The parent plant is added to the propagation record. Further propagation details can be added later by editing the propagation record in the prop table.

Adding a propagation record directly from the plants table.
The parent plant ID is added to the propagation table.

Events for Propagation and Production

Introduction

Propagation/Production (PP) records may also have events. These are similar to events for the main plant table in that each PP record may have 1 to many associated events. The events are organised in a 3 level hierarchy, as are plant events: Event Type, Event Group and Event.

Adding PP events

Certain PP events are auto-added when the PP records are edited. The auto-additions are for:

- Location and sublocation changes
- Container count change
- Growth medium change
- Day and Night temp change
- Treatment change

Events can also be added manually under any defined looks you may have.

Defining lookups for PP events

The lookups for PP events are defined in a simpler way than for plant events. NB. In future revisions, all event lookups will be defined using this new method. Please refer to the section below on Event setup.

Setup options related to RSO and Production

Production-Propagation Numbering

Use System > Options > Living Collections > Production/Prop. to configure production/propagation numbering and sub-location headings.
Note that the sublocation values themselves can be added as custom lookups. In the above example, Block and Row are selected as headings—but as with garden locations, they may have many values.

Generating Lookup lists

Many of the fields in the production/propagation table should be configured with lookup values. Lookup values standardise and greatly speed up data entry and editing and thus, it is important these are added to your system.

Lookup values can be added manually or imported from Excel, both procedures are explained in the manual section on lookups. Note that when importing lookups from Excel, the field names themselves must be the same as the physical table fields and these are often different to the ‘friendly’ names used in the data grids and field lists options. A good way to get the correct name is to manually add a lookup value and check the Field Name value added to the lookup grid. A list of the correct field names is provided in the field list section.

Species defaults table

This table is opened on the Taxa menu with one record per entry in the main species table. The values stored here are the typical values expected for a given species. These data help to speed up and standardise data entry for plant requests and in particular, the data for their PropProd entries.

These data are pulled into the Prop-Prod table whenever an accepted RSO PP record is assigned a valid species. If data are edited in the species default table, the edited values would then be used when creating new RSO records but will not update values in existing RSO PP records.
The data in this example are entirely made up.

Garden Projects table
This table is opened from the main Collections menu when in living collections mode. It stores the names of garden projects. The function of this table is primarily for budgeting purposes so that when ordering new plants, they can be assigned to a ‘project’. Garden projects can optionally be grouped into categories, and they are usually associated with a curator. They may also be associated with a garden location.

Example garden projects as provide by Chicago Botanic Garden.

Production/Propagation Events
When adding plant production/propagation events, you can set up the lookups from Management > Grouped Values. These lookup values can be added in a 3 level hierarchy: Type, Group and Value.
Manually adding an event and selecting one of Event type/Event Group/Event the lookup values.

Production/Propagation field list

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PropNumber</td>
<td>Char -25</td>
<td>Numbering system can be configured under Options > Setup.</td>
</tr>
<tr>
<td>PropMaterialType</td>
<td>Integer</td>
<td>None, Plant, Seed, Cuttings, Grafts, Culture, Division</td>
</tr>
<tr>
<td>PropMaterialCondition</td>
<td>Char -255</td>
<td>Condition of material entering propagation</td>
</tr>
<tr>
<td>RequestedDeliveryDate</td>
<td>Date</td>
<td>Material required for when – usually provided by curator</td>
</tr>
<tr>
<td>CalcRequestedForWeekNumber</td>
<td>Integer</td>
<td>Calculated from requested delivery date (ISO format)</td>
</tr>
<tr>
<td>RequestedDeliveryPlantHeight</td>
<td>Integer</td>
<td>Requested size of plant for delivery</td>
</tr>
<tr>
<td>RequestedDeliveryContainer</td>
<td>Char -50</td>
<td>Requested size of plant delivery container</td>
</tr>
<tr>
<td>RequestedDeliveryPlantsPerContainer</td>
<td>Integer</td>
<td>Number of plants per container when delivered</td>
</tr>
<tr>
<td>RequestedDeliveryContainerQuantity</td>
<td>Integer</td>
<td>Number of containers to deliver</td>
</tr>
<tr>
<td>CalcRequestedDeliveryPlantsQuantity</td>
<td>Integer</td>
<td>Calculated from above</td>
</tr>
<tr>
<td>GrowOrganically</td>
<td>Logical</td>
<td>Simple logical field – yes/no</td>
</tr>
<tr>
<td>PropagatedFor</td>
<td>Char -128</td>
<td>Name of curator the material is for</td>
</tr>
<tr>
<td>PropagatedBy</td>
<td>Char -128</td>
<td>Name of propagator</td>
</tr>
<tr>
<td>ScheduledStartDate</td>
<td>Char -20</td>
<td>A text field can be an actual date or e.g. ‘about mid-May’</td>
</tr>
<tr>
<td>PropTrialNumber</td>
<td>Integer</td>
<td>Used only for accessioned material, the value is auto-incremented for a given accession with multiple propagation records</td>
</tr>
<tr>
<td>PropEndDate</td>
<td>date</td>
<td>Completion date, optionally added</td>
</tr>
<tr>
<td>PropTotalDays</td>
<td>Integer</td>
<td>Calculated from the start and end dates</td>
</tr>
<tr>
<td>PropResultPc</td>
<td>Integer</td>
<td>Calculated as per propagation category e.g. seed germination %</td>
</tr>
<tr>
<td>PropResultQuality</td>
<td>Char -50</td>
<td>Text description of result quality</td>
</tr>
<tr>
<td>Propagation forecast</td>
<td></td>
<td>Forecast fields are the best guess conditions when setting up e.g. to know how much space may be needed. These values can be maintained as entered but also transferred to Actual.</td>
</tr>
<tr>
<td>PropForecastLocation</td>
<td>Char -50</td>
<td>Location where material is expected to be propagated</td>
</tr>
<tr>
<td>PropForecastGrowthMedium</td>
<td>Char -50</td>
<td>Type of medium expected to be used</td>
</tr>
<tr>
<td>1 PropForecastTray</td>
<td>Char -50</td>
<td>Type of tray/flat</td>
</tr>
<tr>
<td>2 PropForecastContainer</td>
<td>Char -50</td>
<td>Type of container</td>
</tr>
<tr>
<td>PropagationForecastContainersPerTray</td>
<td>Integer</td>
<td>Number of containers per tray</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>PropForecastContainerQuantity</td>
<td>Integer</td>
<td>Number of containers</td>
</tr>
<tr>
<td>CalcPropForecastTrayQuantity</td>
<td>Integer</td>
<td>Calculated from the above 2 values</td>
</tr>
<tr>
<td>PropForecastContainerQuantity</td>
<td>Integer</td>
<td>Material quantity per container</td>
</tr>
<tr>
<td>PropForecastContainerQuantityInitial</td>
<td>Integer</td>
<td>Initially calculated from number of containers x material quantity but can be edited.</td>
</tr>
</tbody>
</table>

Propagation actual

<table>
<thead>
<tr>
<th>PropStatus</th>
<th>Char</th>
<th>User defined status codes - optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>PropStartDate</td>
<td>date</td>
<td>Actual propagation start date</td>
</tr>
<tr>
<td>PropBarcode</td>
<td>Char</td>
<td>Barcode for material</td>
</tr>
<tr>
<td>PropLocation</td>
<td>Char</td>
<td>Where material will be propagated</td>
</tr>
<tr>
<td>PropSublocation1</td>
<td>Char</td>
<td>Sublocation name headings can be configured</td>
</tr>
<tr>
<td>PropSublocation2</td>
<td>Char</td>
<td>Sublocation name headings can be configured</td>
</tr>
<tr>
<td>PropSublocation3</td>
<td>Char</td>
<td>Sublocation name headings can be configured</td>
</tr>
<tr>
<td>PropGrowthMedium</td>
<td>Char</td>
<td>Medium used</td>
</tr>
<tr>
<td>PropTray</td>
<td>Char</td>
<td>Type of tray (flat)</td>
</tr>
<tr>
<td>PropContainer</td>
<td>Char</td>
<td>Type of container</td>
</tr>
<tr>
<td>PropContainersPerTray</td>
<td>Integer</td>
<td>Number of containers per tray</td>
</tr>
<tr>
<td>PropContainerQuantity</td>
<td>Integer</td>
<td>Number of containers</td>
</tr>
<tr>
<td>CalcPropTrayQuantity</td>
<td>Integer</td>
<td>Calculated from the above 2 values</td>
</tr>
<tr>
<td>PropQuantityPerContainer</td>
<td>Integer</td>
<td>Material quantity per container</td>
</tr>
<tr>
<td>PropQuantityInitial</td>
<td>Integer</td>
<td>Initially calculated from number of containers x material quantity but can be edited.</td>
</tr>
<tr>
<td>PropQuantityCurrent</td>
<td>Integer</td>
<td>Current quantity on periodic checking</td>
</tr>
<tr>
<td>PropDateLastChecked</td>
<td>date</td>
<td>Date of check</td>
</tr>
<tr>
<td>PropFailureReason</td>
<td>Char</td>
<td>Text describing failure</td>
</tr>
<tr>
<td>PropDayTemp</td>
<td>Integer</td>
<td></td>
</tr>
<tr>
<td>PropNightTemp</td>
<td>Integer</td>
<td></td>
</tr>
<tr>
<td>PropTreatment</td>
<td>Char</td>
<td>General text but can be more specific</td>
</tr>
<tr>
<td>PropSeedsPerPlug</td>
<td>Integer</td>
<td></td>
</tr>
<tr>
<td>SeedCover</td>
<td>Char</td>
<td></td>
</tr>
<tr>
<td>RootingCompound</td>
<td>Char</td>
<td></td>
</tr>
</tbody>
</table>

Propagation GRAFTS ONLY

WarmCallusTemperature	Char	
WarmCallusLocation	Char	
EndWarmCallusDate	date	
WarmCallusDays	Integer	
ColdCallusLocation	Char	
ColdCallusTemperature	Char	
EndColdCallusDate	date	
ColdCallusDays	Integer	
Aftercare	Char	
GraftType	Char	
GraftWaxed	Char	
RootStockType	Char	

Propagation CUTTINGS ONLY

CallusFinish	date	
CallusTemperature	Integer	
CallusDays	Integer	
CutType	Char	
StageOfGrowth	Char	
DaysToRoot	Integer	
HormoneCarrier	Char	
HormoneCarrierRatio	Char	
HormoneConcentration	Char	
HormoneFormulation	Char	
HormoneName	Char	
HormonePrepType	Char	
Wounding	Logical	
WoundingTreatment	Char	
WoundingType	Char	
Retaken	Logical	

Propagation SEED ONLY

<p>| PreTreatmentType | Char | |
| AcidType | Char | |
| AcidConcentration | Char | |
| PreTreatmentTemperature | Char | |
| PreTreatmentDuration | Char | |
| PreTreatmentOther | Char | |</p>
<table>
<thead>
<tr>
<th>PropQuantityInitialIsEstimated</th>
<th>Logical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production forecast</td>
<td></td>
</tr>
<tr>
<td>ProdForecastLocation</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdForecastTray</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdForecastContainer</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdForecastGrowthMedium</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdForecastContainersPerTray</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdForecastPlantsPerContainer</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdForecastContainerQuantity</td>
<td>Integer</td>
</tr>
<tr>
<td>CalcProdForecastTrayQuantity</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdForecastQuantityInitial</td>
<td>Integer</td>
</tr>
<tr>
<td>Production actual</td>
<td></td>
</tr>
<tr>
<td>ProdStatus</td>
<td>Char -10</td>
</tr>
<tr>
<td>ProdStartDate</td>
<td>date</td>
</tr>
<tr>
<td>ProdBarcode</td>
<td>Char -20</td>
</tr>
<tr>
<td>ProdSublocation1</td>
<td>Char -30</td>
</tr>
<tr>
<td>ProdSublocation2</td>
<td>Char -30</td>
</tr>
<tr>
<td>ProdSublocation3</td>
<td>Char -30</td>
</tr>
<tr>
<td>ProdTray</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdContainer</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdGrowthMedium</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdContainersPerTray</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdPlantsPerContainer</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdContainerQuantity</td>
<td>Integer</td>
</tr>
<tr>
<td>CalcProdTrayQuantity</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdQuantityInitial</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdQuantityCurrent</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdDateLastChecked</td>
<td>date</td>
</tr>
<tr>
<td>ProdFailureReason</td>
<td>Char -255</td>
</tr>
<tr>
<td>ProdDayTemp</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdNightTemp</td>
<td>Integer</td>
</tr>
<tr>
<td>ProdDayLength</td>
<td>Char -50</td>
</tr>
<tr>
<td>ProdTreatment</td>
<td>Char -128</td>
</tr>
</tbody>
</table>
Mobile app for Botanic Gardens

All documentation for the BRAHMS garden app is found on this link:

https://herbaria.plants.ox.ac.uk/bol/content/software/v8/BRAHMSapp_guide.pdf
BRAHMS for Seed Banks and Seed Conservation Projects

Introduction

The seed module, developed collaboratively with the Millennium Seed Bank at RBG Kew, has broad curation and research applications for projects that collect, store, test and distribute seed. Seed accessions with passport and related source data, collection and/or seed accession permits, processing, weight/count calculations, viability/germination tests, storage and dispatch, related vouchers and images - are all fully integrated within BRAHMS. Data can be quickly imported via Rapid Data Entry (RDE) files which in turn can be populated with data from Excel. All standard BRAHMS functions for queries, reporting, image/document management, calculations and data analysis can be used.

The seed module aims to facilitate good seed management practice and to strengthen the ability of seed banks, small and large, to better coordinate their seed collection and distribution activities.

Key features

- Seed accession records including all passport and wild origin data can be managed with links to vouchers, project and legal agreement details, seed batch data, cleaning methodology and results, store bank location including duplication to other seed banks.
- Seed counting processes including absolute and/or estimates via seed sample weights, incorporation of x-ray and/or cut-testing analysis to provide adjusted quantities per collection.
- Germination test design including addition of multiple conditions and treatments. Germination test results are provided for both germination and viability percentages, including germination rate.
- PDF files, Excel sheets and other documents can be linked to accession, individual plant, species and other records. Examples are material transfer documents and species level spreadsheets.
- Images of seed or the plants in their original habitat can be added, together with voucher images as available.
- Projects can extend the standard BRAHMS seed data file structures by adding custom fields - these then become a part of your database.
- The Rapid Data Entry (RDE) module is used to capture new seed accessions and test data or to transfer data from other formats such as Excel worksheets.
- Easy to export data to other formats such as Excel - for further processing.
- You can design your own website and publish a virtual seedbank or online plant catalogue directly from BRAHMS sing BRAHMS WebConnect. For example see the RBG Kew MSBP Data Warehouse at http://brahmsonline.kew.org/msbp.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>An infrastructure of taxa from higher classification to infra-specific levels, cultivars and hybrids. Storing all specific epithets, synonymy, common names, descriptions, native distribution, hardiness, shade tolerance, water requirements, conservation status and further details.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutions</td>
<td>Comprehensive lists of institutions and addresses of suppliers and donors or those receiving material through purchase or transaction exchanges.</td>
</tr>
<tr>
<td>Seed Accessions</td>
<td>Storage of seed accession records including details of the type and quantity of material received, who and where from, the original or derived source, and the initial identification.</td>
</tr>
<tr>
<td>Agreements/Permits</td>
<td>The ability to link agreement documents and set restrictions with a legal framework as required for collection events, seed accession and any other relevant records.</td>
</tr>
<tr>
<td>Seed cleaning</td>
<td>Adding all cleaning steps with associated times and notes.</td>
</tr>
</tbody>
</table>
Seed tests | Seed germination tests with their calculations and results.
Seed Duplication | A list of institutions where a seed accession is known to be duplicated.
Processing | Seed cleaning records together with their cleaning steps.
Seed Storage | Details on seed accession storage with quantities and locations/sublocations.
Transactions | The management of incoming seed batches and any outgoing transactions.
Collection Events | Details about what was collected when, where and by who. Collection events are used to record the seed collection site and its details.
Vouchers | Vouchers and related materials can be stored for seed accessions wild collections and/or established garden plants.
Images and Documents | Images and documents associated with Accessions, Plants, Vouchers, Transactions, etc. These can be physical files or media library URLs.
Legal/Permits | Details of all permits and related documentation for the accession, use and exchange of material, evidence of due diligence and restriction requirements.

Summary of the key components used in the seed module.

Setup options - lookups

Before using the seed module, we recommend you check that you have the appropriate lookups as the seed module table have many fields that benefit from these. Examples are material collected, seed cleaning steps, tetrazolium staining results, seed test stages and treatments. You can enter lookups manually or import from Excel. Refer to the manual section on lookups. A sample lookup Excel table is provided on: https://herbaria.plants.ox.ac.uk/bol/content/Software/v8/seedmodulelookups.zip

Seed accessions – overview

Introduction

The main seed accessions table is opened by selecting Seed Accessions on the main Collections menu when the Collection Category is set to Seed Accessions.

Once opened, you can make use of all the standard toolbar options to select visible columns, sort, query and summarise your seed accession data.
The main Seed Accessions table opened with a selection of the available fields set to visible.

Accession numbering and store bank

Accession numbering is currently free text entry although automatic numbering options are likely to be added. Projects may only be storing seed for their own seed bank. However it is also possible to collate data records from multiple banks. For this reason, the Store Bank is available as a field in seed accession records.

Seed Bank and Seed Duplication

It is possible to record the physical duplication of a seed collection to one or more seed banks using the **Duplicates** option. This option allows you

Source/wild origin details

These data describe the source of the seed collection including the location, date, collector(s), initial identification and other site details as required. The data are stored in a linked Collection Event record and can thus take advantage of all the possible collection storage fields – including any custom fields.
The Collection Event tab on the main seed form.

Collection events may also have linked voucher material stored as specimens. You can add, edit and view linked Collection Events details from the seed accession form. Collection events details can also be added via RDE imports.

A summary of the current event is provided on this tab. The Collection Event option opens the collection event table and locates the relevant record. To add a new event and/or to select an existing event, use Select Event.

Batch numbers, supplier details and transactions

Seed supplier details including supplier name and receipt date are now stored in a transaction record. Thus, if you have a batch of incoming seed accessions, these can all be linked to one transaction record. This area of the guide to be expanded.
Seed identification and species data

You can edit the identification of a seed accession from the data grid or the seed form. From the grid, use a standard lookup in any species related field. The **Species** tab on the seed form can also be used. The form has additional options to display a summary of the current species and an option to locate the current species in the main species table.

Legal permits/agreements

You can associate your seed accessions with permits or a selected category and assign a distribution restriction status, optionally with a legal framework.

Your documented agreements/legal permits can be registered in the **Legal Permits** table which is opened on the main **Management** menu. Here you add titles, agreement start and end dates, restriction status, etc.

Legal permit table example entries.

You can link multiple agreements or the same or different categories to a single seed accession record. In the seed accession record itself, you can display the restriction status assigned both to the seed accession and its related collection event.
In the above example, the seed accession has Restricted status. The linked collection event has a 'Restricted by agreement' status. This status will apply to the original collection permit.

For further details of permits, refer to the Legal permits and permissions section.

Calculated fields

As with other tables in BRAHMS, the seed accession table has a number of calculated fields. These can be periodically updated using the Recalculate toolbar option. Examples are #Dups Summary, #Test Total, # Last Test Date and #Best Ever Test %.

Transfer to History (TTH)

Use the TTH fields to effectively archive seed accessions. Reasons may be seed failed to pass a retest, seed disease, seed damaged, etc...

Adding custom fields

If BRAHMS does not include a data storage field that you need, you can add to your database, choosing the data type and field name. For example, you may want to add a new field to your Seed Accessions table called 'My Seed Notes'. The use of custom fields is discussed in the section Adding Custom Fields.

Adding seed accessions

You can add records one by one using the standard Add option on the Data Tools toolbar. Alternatively, you can use Rapid Data Entry (RDE) to batch load records. When using the RDE approach, you can also import data from Excel spreadsheets.

Manual entry

To add an individual seed accession record, use Add to add records individually. You can in fact use the Add drop-down to add multiple blank records to the seed table.
The task then is to enter the details for the new record. In most cases, it will be easier to the seed form. When adding or editing data in Edit mode, you can use lookups for many fields including all those fields where you have registered lookups.

Using Rapid Data Entry/Excel

The use of RDE is discussed in the manual section on Rapid Data Entry.

Processing and testing

X-Ray data

X-Ray details are added from the Seed Accession form Quantity Calculations tab. The count fields for Full, Part Full, Infested and Empty are enabled. The Total is a calculated value. These data are used to calculate the Adjusted Quantity as discussed below. If using a Cut Test, the X-Ray fields are disabled.

Seed weights and counts

Seed counts are calculated from the Seed Accession form Quantity Calculations tab.

The seed accession table has 3 calculated seed count fields: initial Count, Current Count and Adjusted Account. These values are calculated by entering the appropriate data on the Quantity Calculations tab.

The first step is to add the Sample Size and the Seed Weights. Weights will be added either as a single weight sample or as 5 replicate weight samples. In either case, the Remainder weight is added.

Another consideration is whether these counts refer to seeds (the default) or to the Average number of seed per fruit. If using the fruits method (by adding a number to this field), the calculations are adjusted accordingly.

When the weight values are added, the Quantity calculations are updated automatically – as are the Average weight, Standard Error, TPSW and Total weight.
In the above example, there are 5 weight samples of 10 seeds each, each weighing exactly 1 g amounting thus to 50 seeds and 5 g in total. There is a remaining weight of 20 g.

Moisture content

Introduction

Reliable monitoring of seed moisture status is important in the handling and processing of seed collections. To learn more about moisture content measurements, refer to the Kew MSB guide on Measuring seed moisture status using a hygrometer.

Adding and editing moisture content records

You can add moisture content test results using the Processing & Testing > Moisture Content tab on the main seed accession form.
Tetrazolium testing

Introduction

The Tetrazolium test measures potential germination—it provides a quick estimate of seed viability. With results within one to two days this test can be very helpful when time is a factor or for species which have very long germination requirements. For further information on Tetrazolium Testing, refer to the Seed Check technologies fact sheet.

Adding and editing Tetrazolium Test data

You can add tz test results using the Processing & Testing > Tetrazolium tab on the main seed accession form. A list of staining areas would normally be added to your custom lookup list.

Germination tests

Introduction

Different seed banks have their own procedures for monitoring seed viability. This section explains how germination test procedures are managed within BRAHMS. These procedures are those used by the Kew Millennium Seed Bank (MSB) and it is with their input that these procedures have been developed.

Germination tests are normally carried out to monitor the viability of seed collections and to develop protocols for turning seeds into plants. Germination testing is often the most reliable way of assessing viability. For a detailed review of germination testing, refer to the Millennium Seed Bank document on Germination testing – procedures and evaluation.

Test set-up – adding a new test

New tests are added from the Seed Accession form tab Processing & Testing > Germination tests > test Setup. New seed tests are assigned a numeric ID by BRAHMS. At this stage, you are asked to enter the # replicates, the # seeds per replicate, the total number of predicted inspections and the inspection interval in days. When you add a test setup, the system prepares the test scoring table for you, as described in the next step.
Add a new seed test setup.

Test set-up – conditions and dormancy-breaking treatments
Each test can have 1:many condition/treatment records added. For an explanation of these, refer to the Millennium Seed Bank document on Germination testing: environmental factors and dormancy-breaking treatments.

Adding conditions and treatments for a seed test.

Scoring germination test results and calculations
To enter or edit data for a test, switch to the Test Data tab. Here you can enter the test data from the designated number of reps and inspections. If you need to extend the inspection days, return to edit the test setup.
As test results are entered, a colour warnings are given where totals are erroneous.

The above 20 seed replicate has in incorrect entry.

The calculated results are displayed above the grid. The results include Sown, # Germ, Full, Empty, Infested, Mouldy, Abnormal, % Unused, % Germ, % Viable and MGT (Mean Time to Germination).

The test can be Accepted and Passed.

Seed Test data grid
All seed tests stored in your database can be viewed from the main Collections > Germination Tests data grid. Here you can sort, filter and analysis all tests across accessions and taxa.

Seed cleaning

Introduction

Seeds are cleaned to decrease bulk, reduce disease risk, and facilitate future use. Cleaning long-term conservation collections without causing physical damage and reducing seed viability requires care and expertise. To read more about seed cleaning refer to the Kew MSB guide on Cleaning seed collections for long-term conservation.

Adding and editing seed cleaning records

Each seed accession may have one or more cleaning records added. Each cleaning entry records the initial and final state of the seed as well as the 1: many steps per cleaning record. The time of individual steps is recorded and totalled up in the cleaning record.
Lookup values for fields such as Initial State can be stored as custom lookups to standardise and speed up data capture.

Seed storage and distribution

Section to be added.

Linking images and documents

You can link any number of images and or documents directly to seed accession records, tests, collection events, species and any other record related to your seed accessions. For further details, refer to the relevant sections in this guide on image linking and document linking.

Generating reports and exporting data

You can design report templates for seed accessions and all related records including seed transactions. Full details of report design are covered in the reports section of this guide.

All data export options including transfers to Excel, XML and Darwin Core are covered in the exporting data section of this guide.
Transactions – recording the movement of materials

Video: https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8videos#transactions

Introduction

Transactions monitor incoming and outgoing loans, gifts, exchanges, and other transaction categories as you define. They maintain a permanent record describing the movement of physical specimens, plants or other items.

As well as providing longer term benefits that come from tracking the movement of collections, the transaction module has immediate practical uses: printing lists, pinpointing the whereabouts of particular collections; balancing specimen numbers in herbarium exchange schemes; listing loans overdue; and preparing transaction period activity reports. The module also provides a logical platform to record in-coming determinations. As specimens return from loans, revised determinations can be efficiently updated and fed into the main database.

Frequently, the need to record which specimens are being dispatched on loan is an incentive to databasing collections, providing a realistic way to making a start with this often massive and daunting task and at the same time doing something of immediate practical benefit. To make full use of the transactions module you do not need to have a fully databased herbarium – you can start today.

Herbaria using barcodes can make good use of these with the transaction module. Barcodes are used to select individual specimens. Barcodes:

- Provide extra precision with the handling of collection materials.
- Save time selecting collections for dispatch and recording returns.
- Can be included on specimen lists providing an unambiguous specimen reference.

Adding a sample transaction

The demo database does not include transactions data but you can test by adding a dummy transaction record and linking some specimens to it. Normally, barcodes would be used for certain tasks here, for example selecting material to link to a transaction or marking material as returned. As you do not have the barcoded material, we can use alternative methods.

- Select Collections > Transaction categories. This table includes the categories of transaction you wish to manage. This example will choose ‘Loan requested from you - then returned’ therefore you don’t need to add a new category.
- Select Collections > Transactions to open the main transactions table. Select Edit to switch to edit mode. You can enter some details into the grid using the F9 lookup key in fields such as Category and Institution Name. You can also use the Form to edit the transaction details.
- Select Collections and choose the Category Preserved Specimen from the dropdown. You can then select Specimens to open that table.
- Now tag some specimens to link to the newly added transaction. You may want to use Tag > Untag first to ensure nothing else is tagged.
In this example, data grid filters have been added for Institute Code and # Full Name to select all specimens at FHO of *Agathis ovata*. These records have all been tagged using Tag > Tag all.

- Finally, select the main Collections menu again and then use the option Tag -> Trans. This will link the tagged material to the selected transaction. You can see the result by returning to the transaction file and opening the form on the Data Tools menu.

Linked specimens listed on the main transaction form. Determinations can be edited here as material is returned.

Barcode scanning is normally used to link/unlink material as well as mark material as Returned.

Note also that images linked to specimens can be published to virtual loans via BRAHMS online.

An example transaction with the form opened listed linked herbarium specimens. Data provided by Naturalis, Netherlands. Options are provided to return material manually or using barcode scanning. Determinations can also be edited here.
Legal permits and permissions

Introduction

The legal permits and permissions facilities in BRAHMS, updated in BRAHMS 8.0.10, are used to help you adhere to and document current international regulations with respect to the collection, storage and distribution of your preserved and living materials. These may be international legal frameworks such as The Nagoya Protocol or individual agreements between institutions, for example a Material Transfer Agreement or Collection Permit.

You can link multiple agreements to any record in BRAHMS together with accompanying documentation. Where relevant, the restriction status associated with an agreement is prominently displayed in your collection event, living accession, living plant and seed record data grids.

Legal permits/agreements table

This table is opened from Management > Legal Permits. The table has a comprehensive set of fields to add agreement details with the legal framework, agreement category and restriction status if applicable.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Det</th>
<th>Restriction Cat. (Sg)</th>
<th>Material Cat. (Sg)</th>
<th>Type</th>
<th>Title</th>
<th>Permit No.</th>
<th>Start On</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Restricted by agreement</td>
<td>Nagoya (post 2014)</td>
<td>Seed Accession Agreement</td>
<td>CRIUS - The Agricultural Research Institute Hawaii - test entry only</td>
<td>AGN 00245</td>
<td>07/10/2011</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Restricted by agreement</td>
<td>n/a</td>
<td>Collection</td>
<td>KEKAF - Forestry Research Institute of Malawi (PRM) - test entry only</td>
<td>AGN 00254</td>
<td>01/12/2011</td>
<td>15/05</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Unrestricted</td>
<td>(CBD 1991-2013)</td>
<td>Seed Accession Agreement</td>
<td>IITA - IITA Rice - test entry only</td>
<td>AGN 000087</td>
<td>01/12/2014</td>
<td>01/01</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Restricted</td>
<td>Pre-CBD (before 1991)</td>
<td>Seed Accession Agreement</td>
<td>AUSTRALIA - Western-Australia test entry only</td>
<td>AGN 000035</td>
<td>11/04/2000</td>
<td>12/05</td>
</tr>
</tbody>
</table>

You may define any category of agreement type – examples being collection, import, export, phytosanitary, etc.

Default values for permit types and restrictions

<table>
<thead>
<tr>
<th>Default Permit Categories</th>
<th>Default Legal Frameworks</th>
<th>Default Restriction Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>Restricted</td>
</tr>
<tr>
<td>Nagoya Protocol</td>
<td>Nagoya (post 2014)</td>
<td>Not restricted</td>
</tr>
<tr>
<td>Collection</td>
<td>CBD (1991-2014)</td>
<td>Restricted by agreement</td>
</tr>
<tr>
<td>Research</td>
<td>Pre-CBD (before 1991)</td>
<td></td>
</tr>
<tr>
<td>Import</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytosanitary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The default values provided from these lists can be edited under System > Options > Management > Legal Setup. As these are standard lookups, you can also edit the values in the normal way using Management > Lookup fields. The lookup field names are PermitType, RestrictionCategory and MaterialCategory.
The main system options form provides facilities to edit the default values for legal permits.

Assigning legal and restriction status to records

In the collection event, living accession and seed accession tables, the Legal toolbar option opens the Legal Permits/Agreement Links options. Using the top part of this form, you can select and add legal and restriction values to the current record. Use Update to update the record values.

Adding agreements and related documents

On the same legal form, use the Link option to link a specific agreement as stored in your agreements table.

On the form, you can also add various notes fields for each linked permit. Due Diligence entries can be added for your permits and permissions entries.
In the lower part of the same form, you can link documents to the agreement records. Using the Linked Record tab, you can also link all record associated with the same agreement.

Transactions and distribution status
For each category of restriction status that you add, you can optionally assign a 'No Distribution' status. Items with ‘No distribution’ status cannot be linked to transactions and/or warnings, when linking materials, are given.

Assigning distribution status values.

The Nagoya Protocol
The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization (ABS) to the Convention on Biological Diversity is a supplementary agreement to the Convention on Biological Diversity. The Nagoya Protocol on ABS entered into force on 12 October 2014. It provides a transparent legal framework for the effective implementation of one of the three objectives of the CBD: the fair and equitable sharing of benefits arising out of the utilization of genetic resources thereby contributing to the conservation and sustainable use of biodiversity. See https://www.cbd.int/abs/about/

Species protection and legal status
CITES, Red List and other notes about species are added to species records directly.
The main species table filtered on accepted names, sorted by family+ species. A column view named ‘red list’ has been saved and is here selected.
Publishing online with WebConnect

Introduction

Many projects are under increasing pressure to publish their data online or simply want to share their data with the wider community. This section explains how you can create and edit your own websites and upload your data and images directly to BRAHMS online. The module connecting BRAHMS to BRAHMS online is known as WebConnect.

You do not have to be a website techy to develop a basic website. However, the more knowledge you have, the more you can develop. WebConnect provides a blank blackboard upon which you can use any valid HTML, CSS and jQuery constructs.

BRAHMS online

BRAHMS online (BOL) is a unique website service created for the BRAHMS project. It is used to publish BRAHMS databases online and/or to describe and promote your project. BOL websites can be richly developed with text, images, hyperlinks, tables, file downloads and indeed any standard website feature. Websites can be linked to one or more BRAHMS databases and the online data query tools search these data and present the results in flexible text pages and data grids. You can see example screens and websites on: https://herbaria.plants.ox.ac.uk/bol/brahms/publishonline/bolfeatures and https://herbaria.plants.ox.ac.uk/bol/brahms/publishonline/websites

An example of a content rich, BRAHMS online website: http://brahmsonline.kew.org/msbp - the website site design and data uploads were processed via WebConnect.

BRAHMS online servers

BRAHMS online websites can be can be developed and published on any computer where the BRAHMS online system is installed. You can create websites on the BRAHMS server located in Oxford (requires license) or on another server that has BOL installed. Many projects choose to install BOL on a server within their own institution.

Server location influences the URL address of your website. You may want to install BOL on your own server and register a meaningful Domain Name System (DNS) for the server such as http://newworldfloras.org and thus be able to have a URL such as http://newworldfloras.org/ericaceae. Read more on e.g. http://en.wikipedia.org/wiki/Domain_Name_System.
BRAHMS WebConnect

WebConnect is the software that connects your BRAHMS system to BRAHMS online (BOL) allowing you to develop and edit websites and upload selected data and additional resource files. Using WebConnect, you can manage security settings, control access, logins and downloads. Web design uses bootstrap with each site having its own CSS file. WebConnect options are accessed in BRAHMS from the PublishOnline menu.

Signing in

To sign in to WebConnect from BRAHMS desktop, you need a username and password. The username and password are the same one you receive when you register on the BRAHMS website. Unless you have been assigned the role of Administrator within BRAHMS online, you will need to have been given manager access to one or more websites.

If you have not done so, register on https://herbaria.plants.ox.ac.uk/bol/brahms/Account/Register

Once you have registered on the BRAHMS website and have received your password, you can use these credentials to log in to WebConnect directly from BRAHMS desktop. To do this, select PublishOnline > Sign In.

Your login screen will look similar to this one, assuming you are using BOL on the main BRAHMS server. If BOL is installed on another server, the BOL server address will be different.

Once you have connected successfully, any projects you have access to will be listed in the Project dropdown.

If you do not have access to any websites, it will not be possible to proceed. To gain access, the BOL administrator needs to link your login credentials to one or more website projects.
Managing website projects

Create a new website project

For users with administrative access, select New Project on the Publish Online toolbar. If you do not have admin access, ask the BOL administrator to create the website for you and give you permission to access and edit the website.

The Project ID will be used to form the final part of the website URL on the BOL server. In this case, the website URL will be https://herbaria.plants.ox.ac.uk/bol/mymuseum. If BOL is installed on your own server, the URL will reflect that. You may also define domain addresses such as http://brahmsonline.kew.org/msbp

Editing a project

Description and access permissions

The Edit Project options are the same as those found when using adding a new project. You can add a project description which may be useful for web browsers picking up your website details; the contact name and email; and a default image copyright message which is displayed under each data linked image. There are also options to:

- Restrict downloads to users who are registered and logged in.
- Restrict searching to users who are registered and logged in.

If both these checkboxes are ticked access is restricted to signed-in project members only. With only one box ticked, access will not require project membership but will require the user to be signed in.

You can also disable a project. If disabled, the project is taken offline but it remains editable through web connect.

Project members

The options on the Project Members tab allow you to control who has access to your database. Any user registered on the BRAHMS website can be added as a member or a manger.
A user added as a Manager will have access to edit the website details. You only need to add users as Members if you are controlling access to search your data online. When the two 'Restrict' checkboxes on the Project tab marked with ** are both ticked, members added here will have access to search and/or download data.

Delete a project

If you delete a project, this will delete the website together with all of its associated website design images and any related documents. This will NOT delete any databases or data images associated with the website.

Website design

Introduction

Website design is based on a bootstrap/CSS framework directed at responsive, mobile-first front-end web development. You can also use jQuery. You can add multiple webpages and organise these in a hierarchical menu structure.

Web pages are added to a data grid with one record per page. Each page will be displayed on your website menu – either as a main menu item or as a child record of a main menu item.

Creating and editing web pages

Opening the website editor

To create and edit web pages, select Edit Web Pages on the Publish Online toolbar. This opens a data grid with one record per website page.
The above screen shows a newly created website project. By default, a page is added with menu text ‘Home’. The Page URL is set to ‘Index’ and the default language is ‘En’. On the right panel, the Live Site View displays the page online.

Editing the HTML

To edit the page, select View/Edit Page HTML mark-up at the bottom of the screen. This action opens up the text editing area into which you can add any html mark-up you wish, optionally basing this on a bootstrap framework.

When text is edited the Save options are enabled. Once saved, the live website is updated.
Adding new pages

To add a website page, select New at the bottom of the data grid. Edit the Menu text and the page URL in the data grid fields. Do not use spaces in the URL. Pages can also have a page order which will control their position in the menu. They may also have a Parent Menu value. If the Parent Menu is left blank, the page will appear as a top menu item. If you add a parent menu value using the dropdown provided, the page will appear as a sub-menu item of the parent page. Example uses of the Parent Menu option can be seen in the BRAHMS website example below. The Auth. Only and Members Only options are discussed below.

Web Pages added to the main BRAHMS website showing the use of the Parent Menu field. Clicking on any record in the grid (=web page) will update the Live Site View on the right.

Using CSS

Please note that this guide is not intended to provide instructions on editing HTML or CSS.
Website layout and formatting can be controlled using the CSS (Cascading Style Sheets) file. CSS describes how HTML elements are to be displayed on screen, paper, or in other media and the correct use of CSS saves a lot of work. The CSS effectively provides a Stylesheet for your website. It helps to separate document content from document formatting and styling, reducing website complexity and making it far easier to edit and change all your website pages at once.

To open and edit the CSS file for your website, select the Project CSS tab next to the Live Site View tab.

Website page images

Introduction

Some general points:

- Image file names uploaded to websites should not include spaces or other strange characters. Underscores are OK. Thus not Clusia alba.jpg. Clusia_alba.jpg is OK.
- Large sized image files (file size in bytes) take longer to load when someone views your webpage. Keep homepage images as small as possible without loss of clarity. Ideally less than 50K. High resolution images may be larger. HiRes images are discussed later in this document.
- Uploading a large sized image and then forcing a smaller dimensions using HTML image tags to reduce image height/width is bad practice – better to resize the images before uploading.
- Make sure the dimensions of your images are suitable – not just for your monitor.

Banner image

The banner (upper rectangular image area) is an important part of your website. This is composed of a single image with dimensions approx. 800 x 100 pixels. The final dimensions may vary but if it is too deep, you will waste valuable screen space and if too wide, it may not fit on some screens. Example banner images follow images

Each of the above banner images is a single image named banner.jpg. The banners were designed using PowerPoint (or similar) with text, images and then the final image cropped out. You could easily design a banner using your word processor and cropping an image from the screen with the Windows snipping tool. Or equally, PhotoShop, PaintShop Pro, Thumbs+, etc. The banner image must be named banner.jpg. When saving your banner.jpg, also save the original copy (e.g. ppt or word file.) you used to make this image to the same folder – in case you need to modify it. Store these files in your website development folder.
Virtual search themes

Virtual Search Themes are an optional property of your website and are set by selecting Edit Project > Virtual Theme. Search themes allow you to link a database to a website but restrict the data that are visible/searchable. Thus, you may upload one large institutional database and then develop several specialized websites against that one database. For example, a museum database may include data for many plant and/or animal groups. You may have one website that provides access to all the data. However, you may also design one or more separate specialized websites.

You can add search themes for one or more families, genera, countries, major administrative areas or collectors in any required combination. An example would be a website focused on the plant family 'Anacardiaceae' with a virtual theme restricting searches to that family. Other examples: a single family/genus in a single country or multiple families/genera in a single country or a single family/genus in multiple countries or multiple families/genera in multiple countries.

An example virtual theme applied to a website project.

Uploading data from BRAHMS to BRAHMS online

Introduction

The following assumes you already have access to the BRAHMS online (BOL) system, either on your own server or on the BRAHMS project server.

You can selectively upload data from your BRAHMS desktop database to BOL. Before doing this, you need to register a named ‘online database’. The database is separate to the actual website. For example, you may have created a website project with various web pages. This website may not necessarily be linked to a database and thus have an ‘Explore’ menu. After creating a database, before or after uploading data from BRAHMS desktop to it, you also need to link this database to your website project. Note that you can link more than one database to a single website project.

Creating an online database

After signing in to Publish Online as described above, Choose Manage Data. Note that these options are entirely independent to operations linked to website design.
Linking your database to your website project

After creating a database, even before you upload any data, you can associate this database with a website project. To do this, select **Edit Project** and ensure that the correct Website project is selected. Most users will only have access to one project in any case—and this will be selected by default when you sign on to Publish Online. One the Edit Project form, select the **Linked Databases** tab.

The list of databases shown on the left will be restricted to those you have permission to edit. Most users will only see their own database. Use the **Link** button to link the database to the select website project. The database name will be moved to the right panel. Select **Save Changes** as prompted.

Once you do this, any data uploaded to this database will be available and searchable on your website from an **Explore** menu option. The Explore menu option is auto-added whenever there is a linked database.

If a website project has at least one linked database, the website menu option ‘Explore’ is auto-added to the menu. The text ‘Explore’ can be edited as discussed in the section on the **Explore menu**.

Explore menu

When you have a database linked to your website project, this will add an ‘Explore’ menu option. You can edit the menu text by editing the Menu Text entry assigned to the Explore Page URL.
You can edit the default ‘Explore database’ to ‘Search’ or any other text you wish.

Uploading data

Introduction

Data can be uploaded to your online database using the options on Publish Online > Manage Data. When you choose this option, the online database associated with your desktop BRAHMS database will be selected (assuming you have created a database as described above).

The categories of data that may be uploaded are listed on the left of the form. The upload restriction options are on the right side. The settings in the above example will only upload tagged records from the species table. Description of any images directly linked to these species will also be uploaded. Image uploading is discussed in a separate section below.

BOL upload fields in BRAHMS desktop

The fields ‘Uploaded to BOL By’ and ‘Uploaded to BOL On’ are available in all relevant tables in BRAHMS desktop. Thus, you can easily see which data records have been uploaded — and by who.

Upload restrictions

Section to be completed

Data Import History

You can review all previous data uploads using the Manage Data > Data Import History.
The Data Import History lists all the XML files that have been uploaded together with their import status.

Upload hierarchy

When you upload data that has ‘parent dependencies’ that also must be uploaded, these data will be automatically uploaded. For example, if you are uploading specimen data, the species and collection event records that these specimens have as parent records will be auto-uploaded if they are not already online.

Images

Uploading images

Details about your images (as linked to the data) are uploaded using the Images upload option. This option transfers details about the image file names, the links between images and data in your database, image key word if linked, image copyright and some other image details. If uploading data for large numbers of images, use the batch upload option provided.

The image files themselves must be copied to the server and stored in the correct folder. The default folder on the server is `brahmsonline\images\databaseID` where `databaseID` is the ID of the database the images are linked to. Server image locations are discussed further below.

BRAHMS online images can be viewed as a single image file or using the Zoomify image view. Zoomify must be licensed on the server.

Server image folders

By default, images linked to data on BRAHMS online, are stored in a special images folder as described in the BOL installation guide. However, you can choose to store images in different folders which is clearly convenient as:

- it reduces the total number of images in any given folder
- if you have images already on your server that are linked to your BRAHMS database, you do not need to duplicate these to any special BOL server folder

BOL needs to know where to look for your images. This is done using a text (XML) file named `LOCATIONS.XML` that lists all of your image folders. This file is created in BRAHMS by:

- Selecting Images > BRAHMS online Image Folders and adding all the folder names.
- When in this file, selecting Tools > Generate XML file

Section to be completed
The XML file must then be copied to the default images folder on your server. If using the BRAHMS server, the file should be emailed to the BRAHMS project.

The only requirement for the paths listed in locations.xml is that they must be accessible to the web process (usually the Network Service identity), write/modify access is not required to the locations listed (write/modify access is required for the default database images folder only).

Thus, the locations.xml file contains the paths to search for the online image files. A separate locations.xml can be created to indicates where BOL should look for any HiRes versions of the file (the only requirement is that a high resolution image has the same filename as its standard resolution counterpart).

When a database image is searched for by BOL, the following sequence of events occurs:

1. BOL looks in the default database images folder and reads a file called files.xml, this file is automatically created.

2. The files.xml file is searched to see if it contains a path for the image file being sought, if a path is found the path is checked to see that the file still physically exists, if it doesn't still exist then that path is removed from files.xml and the search continues.

3. Assuming the file is not yet found then the default database image file location is checked. If the file is found in the default location then that path is added to files.xml to speed up future access to the image.

4. If the file was not found at step 3 then BOL looks for a file called locations.xml (see above) in the default database images folder. If this file is found then every listed location is checked until either the file is found or there are no more locations to check. If the file is found then the file path is added to files.xml for speedier access in future. If the image is not found after checking all locations listed then all checked locations for that file are logged to a file called missing.xml which may help track down missing images or image locations. Using Zoomify (http://www.zoomify.com/) makes high-quality images zoom-and-pan for fast, interactive viewing on the web. BRAHMS online uses Zoomify to present images. When Zoomified, your images (e.g. .jpg files) are converted to .pff files. You can batch process images on the server using the Zoomify convert tool. The BRAHMS online server in Oxford has a licence to run Zoomify. A new licence is required for each server installation. Thus, if you have BRAHMS online installed on your server and you want to use Zoomify to display images, you will need to purchase a licence. The Enterprise license is recommended so that .pff files can be used rather than tiled files in a folder hierarchy which would be harder to manage (the .pff files keep the entire equivalent generated image tiles within a single file) - see http://www.zoomify.com/enterprise.htm for more details - the cost of an educational enterprise license is currently (2012) approx. US$195 (~$295 for noneducational). See also http://www.zoomify.com/support.html#q_ZEv3 A folder showing some jpg images converted to pff files.

Section to be completed
Database maintenance

Re-indexing databases

Re-indexing can increase the efficiency of a database, especially after heavy editing.

SQLite databases

Select **System > Manage Data connections**, highlight a local file system (database (Personal, Conifers or any SQLite database you may have created) and then select **Edit > Re-index**.

![SQLite Re-index option](image)

Re-index option for SQLite databases.

MSSQL Server

Select **System > Manage Data connections**, highlight a local file system (database (Personal, Conifers or any SQLite database you may have created) and then select **Edit > Re-index**.

Note however that for large databases with > a million records, we do not recommend running the re-index option from BRAHMS. Rather, you should set up a re-index task directly on the server. You may choose to run this task nightly. The query to run is:

```sql
EXEC sp_MSforeachtable @command1="SET ANSI_NULLS ON;
SET QUOTED_IDENTIFIER ON;
alter index all on ? REBUILD WITH (FILLFACTOR=80, STATISTICS_NORECOMPUTE=ON);"
GO
```

![MSSQL Query](image)

Execute the above query against the database to optimise. This could be set to run as an automated (overnight) query on servers.
Backing up your data

Introduction

Please note that OUI, the BRAHMS project and the BRAHMS software itself is not responsible for backing up your data. Data backup strategy entirely depends on the individual or institution using BRAHMS. If you sub-contract data storage to a third party (e.g. cloud storage), you may engage in an agreement with that third party that includes backup. For larger organisations with an IT department, usually, the IT staff will set up scheduled, automated backups. Individual users should make sure their back up procedures are robust.

Backing up is the process of copying valuable files to a safe place in a systematic way. There is only one way to absolutely ensure the safety of your data – rigorous adherence to a regular program of backing up of your data. It is a nuisance to backup but this is a much better alternative than the loss of your data.

Whether you are storing your data in SQLite, MSSQL Server or PostgreSQL, you need to ensure you have adequate back up procedures in place. This applies to individual researchers and large institutions alike.

Be warned that some projects get their fingers burned badly before they take backing up seriously. Years of hard work can be lost in different ways - here are some possibilities:

- A computer may be stolen.
- A computer / server disk may malfunction or crash with loss of all data on that disk.
- Files on a computer may be deleted by mistake.
- Files may be corrupted by a hardware fault or a power failure.
- Data files may be progressively damaged by an undetected software fault.
- You may make one or a series of complex editing errors.

Copy your files to a different disk/storage media. If you backup to the same storage media (e.g. your hard disk), all your eggs are in one basket. Do not continually backup to the same backup file, thus overwriting the last backup. If you do this, you may end up overwriting a good backup with bad data.

Creating backups - which files?

SQLite files

SQLite files can be used for BRAHMS databases and are used for all RDE files. BRAHMS SQLite files have a .db or .RDE extension. They can simply be copied to another media, optionally compressed. Your RDE files may be distributed across man different folders – and thus you need to make sure that active files are backed up.

MSSQL Server – Express or Full version

If you are running the free express version, it’s likely you will be responsible for your own backups. Express does not allow for automated backups in the same way that the full version does. With the full version, there are many options to create e.g. daily, overnight scheduled backups or 2-hourly backups.

Assuming you have not set up an automatic back up process, you need to use the Management Studio to create a backup. The backup is created using a right-click on your database name and choose Tasks > Back up... and this process will create a .bak file is the specified folder. The default settings will normally be adequate – thus you just need to select OK to create the bak file. There is a lot of help provided online.
The bak file you created can be compressed and then copied to your backup media.

Bear in mind the advice provided in backup rotation and frequency.

PostgreSQL

The process for PostgreSQL is similar to that used for MS SQL Server. Please refer to PostgreSQL documentation such as https://www.postgresql.org/docs/9.1/backup.html and https://www.geeksforgeeks.org/postgresql-backup-database/

Reporting templates and other files

When developing your backup strategy, do not forget that you have other files to cover. These may include your report templates and saved column views.

Backup rotation and frequency

Do not overwrite all your backups. Rather, keep a continuous record of your data as it changes right from the start in a growing series of archived backups. A continuous series of backups is your strongest defence against data loss. Should an unexplained, perhaps systematic error creep into your database, you may need to step back in time, backup by backup until you find the beginning of the problem. Rotate storage media in a sensible way. Always keep at least some regular backups that are not overwritten. The frequency of backing up depends on the rate of data entry. If you are editing your main database every day, you may want to back up every day. RDE files should always be backed up after a data entry session.

For larger institutions, back up frequency and rotation is normally automated using automated database backup procedures. For example, there may be a requirement to set up automated backup procedures that would minimise any potential data loss to a 2 hour period.
Annex 1. Upgrading BRAHMS v7 to v8

Checking your v7 database

Please follow each of these steps carefully. Errors in v7 will cause the transfer to fail.

- Your BRAHMS 7 version should be 7.9.14 (August 2019) or later. The version is displayed on your log in screen. Earlier versions must be upgraded.
- Log into a copy of your v7 database. While not essential, it will be better to use a database copy as some minor changes are made to the database structure.
- Select Admin > Project configuration > Indexing and make sure the setting is Machine rather than General. If it was General, switch to Machine and re-index your database.
- Re-index your database. If any data errors are reported (e.g. month value 13), you should fix these now. For example, you may get a message box indicating errors in some fields as follows:

 DETMONTH, LAT, LONG, GAZ LAT, GAZ LONG

If you see such warnings (indicating incorrect numeric values), follow the screen message to locate the data and remove these errors. Such errors may cause the transfer to v8 to fail.

The re-index in v7.9.14 or later checks for further errors and irregularities. For example, it may be that older v7 databases have rogue link file records; rogue entries in the ‘people link’ file; or incorrect synonym links in your species file. Follow the screen instructions to correct reported errors.

- Select Admin > BRAHMS tables, record totals and database integrity.

If your database has any errors, these must be resolved before you transfer. If you do not remove these errors, the transfer will fail. If you need help with this stage, contact the BRAHMS project.

Adding a database description

Select File > Database manager and ensure you have added entries to the fields:

- DESCRIP (short description of your v7 database)
- COPYRIGHT (if applicable)
- TERMSOFUSE (e.g. "Data not for commercial use")
- CREATEDBY (e.g. your institute or personal name)
- CREATEDON (this can be approximate)

This information will be transferred to v8 and can be edited there later on. If these data are missing, the transfer will request that you return to v7 to edit one or more of these fields.

Checking your v7 link files

Link file fields (custom fields) are transferred to v8. This is a good time to look over your various link files to check if you have unwanted or redundant fields. You may want to remove any redundant link fields prior to the transfer although this can also be done in version 8.

Checking text descriptions

Taxa text descriptions from your v7 family, genus and species files are stored in a different way. Certain v7 memo fields in these files have been moved to a new table in v8, the taxa text descriptions file.

- The following fields are no longer stored in the v8 family and genus files themselves: DESCRIP, DISTRIB, DIAGNOSTIC, WEBLINKS, WEBNOTES, NOTES01-NOTES05.
- The following fields are no longer stored in the v8 species file itself: DESCRIP, DISTRIB, WEBLINKS, WEBNOTES, USES.
These various memo fields are transferred to the new table in v8. However, before exporting your data, you must run the option **Admin > BRAHMS v8 data transfer > Prepare taxa text for transfer to v8**. Otherwise, data in the above fields will not be transferred. This option does not remove data from the v7 fields – rather it copies the relevant table in v7.

Folder preparation

Create a folder on your workstation to gather the v7 XML transfer files. Any folder name/location can be used. An example is `c:\myv8xmlfiles`.

Creating the v7 xml transfer files

Log into v7 in single user mode and select **Admin > BRAHMS v8 data transfer > Transfer data to v8...**

![The v7 transfer form.

This phase is where your data are transferred to XML files. Primary and foreign keys are created as new GUID fields. The file creation will take some time with large databases but you can watch the progress in your XML folder as the files build up. Large tables are split into multiple XML files numbered 000, 001, 002, etc. The recommended settings are the defaults. However, if exporting a very large database for testing only, you can de-select the options **Transfer track changes** and **Transfer record create details** as these may significantly increase the export time.

Select **Process data** to generate the XML files. Progress is reported as it goes through the various v7 tables.

![A sample of the types of file you can expect to see in your XML folder](https://example.com)

Choice of data store for your v8 database project

With no further installation, you can transfer your v7 data into an SQLite data store. SQLite is more suited for smaller databases.

If you are transferring a large database, it will be better to import your data to MSSQL or PostgreSQL. Instructions on setting up an MSSQL Server or PostgreSQL databases are provided separately.

Although an SQLite data store can store more than one database project, we recommend that you create a new instance of the data store for substantial projects. Thus, while you could import your v7 database into the
default brahms.db SQLite data store or to the store holding the conifer database, it makes more sense to create a separate instance of the SQLite data store.

Importing v7 xml transfer files to v8

- Log into v8 using the settings as below – unless you have a BRAHMS username and password assigned.

![Login](image)

- Select **System > Manage Database Projects** ... Then Select **Import** and navigate as prompted to locate the **DatabaseProject.xml** file in the XML folder created above.
- If you want to speed up the initial import, you can opt to exclude Edit History data – bearing in mind that these data can be imported later on. Otherwise, select the default option **Import Everything**. NB: Edit History includes record addition date, added by and track changes details as recorded/available in v7.
- Select **Save** to initiate the import.

![Database Projects Manager](image)

Importing progress is displayed.

If the import process fails, you will have to delete the XML folder and start again. this implies that there was an unresolved error in your v7 database. The import process is all or nothing.... If you are unable to resolve the issue, contact the BRAHMS project.

Once the import has completed, you can **Load** the project. The XML transfer files can be deleted.
Annex 2. Key differences between BRAHMS v7 and v8

While derived from earlier versions of BRAHMS with respect to much of its functionality, v8 is an entirely new system with updated technologies and data store. BRAHMS v7 users will recognise many of the tools and functions in v8 as well as the broad layout of the menus. However, as listed here, there are fundamental differences between these systems.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project management</td>
<td>The BRAHMS project now has additional management support from Oxford University Innovation (OUI) who provide licences for BRAHMS, ensuring users get the correct package and support. https://innovation.ox.ac.uk/licence-details/brahms/</td>
</tr>
<tr>
<td>Museum management</td>
<td>V8 is no longer restricted to botanical data. The concept of herbarium specimen is replaced by preserved specimen (i.e. museum specimen). https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#nathistory</td>
</tr>
<tr>
<td>Data storage</td>
<td>Data are no longer stored in DBF and FPT files but rather in a choice of stores that are fully up to date with respect to technology and have no meaningful limit to table size. Current options are SQLite, MSSQL Server and PostgreSQL. V8 databases can store and cross reference millions of records. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#performancevideo</td>
</tr>
<tr>
<td>International</td>
<td>BRAHMS v8 is international with respect to the interface and the data. Data are stored in Unicode with no restriction on the character data stored across languages. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#language</td>
</tr>
<tr>
<td>Temp files folders</td>
<td>There are no longer any temp file work folders. Instead, personal files such as RDE files, saved files, column views and exported data are saved in your BRAHMS folder in Documents.</td>
</tr>
<tr>
<td>Primary and foreign keys</td>
<td>All table key fields use 32 hexadecimal digit GUIDs. They cannot be duplicated and thus remove the danger of duplicating primary keys. Database integrity is assured both by the BRAHMS software and by the DBMS.</td>
</tr>
<tr>
<td>File and field names</td>
<td>Table and fields names have been updated to be more meaningful. V8 is no longer restricted to 10-character field names.</td>
</tr>
<tr>
<td>Modular system</td>
<td>BRAHMS v8 has a flexible, 3-tiered and modular architecture opening up options for shared development. The user interface (UI) is independent of the services and data store access and therefore could relatively easily be substituted by other technologies such as a web-browser UI. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#modular</td>
</tr>
<tr>
<td>Interface</td>
<td>The new system uses ribbon toolbar technology (context sensitive menus and toolbars) similar to that used in MS Office applications – making it highly intuitive. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#v8menus</td>
</tr>
<tr>
<td>Help</td>
<td>Improved help is built into v8, backed up by online support and training video clips e.g. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#mappingvideo</td>
</tr>
<tr>
<td>NULL values</td>
<td>It is possible to store NULL values in all tables.</td>
</tr>
<tr>
<td>Species table and field names</td>
<td>The fields SP1, RANK1, SP2, RANK2 and SP3 have been dropped. V8 has separate fields for species, subspecies, variety, forma and cultivar. Formatted tax names include the appropriate ranks. The size limit on these fields has been increased. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#taxonnames</td>
</tr>
<tr>
<td>Higher level classification table</td>
<td>A new table is added for taxon ranks above family. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#taxonnames</td>
</tr>
<tr>
<td>Extract files</td>
<td>V8 does not have the equivalent of extract files. Instead, your selections are seen in the main tables after applying a query.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Queries and filters</td>
<td>Query and filter functions are one and the same thing. Both now use standard SQL commands and have exactly the same result. There is no longer a fixed menu of query commands. You can design and save your own commands.</td>
</tr>
<tr>
<td></td>
<td>https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#explore</td>
</tr>
<tr>
<td>Tree Views</td>
<td>Tree Views are now available in all tables. You can also design and save your own multi-level Tree Views. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#treeviews</td>
</tr>
<tr>
<td>Link file fields</td>
<td>Link fields in v7 are now referred to as custom fields. These fields can be added to all tables rather than being treated as add-ons, they become a more integrated part of your database. For example, they are added to the main data grids rather than optionally appearing below the grid. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#custom</td>
</tr>
<tr>
<td>Lookup list</td>
<td>The v7 custom look up list table is now separated to two tables: look up fields and look up values. The field list includes meta data about the lookup fields such as whether there is forced lookup or free test entry is permitted. The values table has entries for all lookup values – abbreviations are no longer used.</td>
</tr>
<tr>
<td>Tagging</td>
<td>Tags (adding a symbol to the TAG field) in v7 were added to the main data files. Thus, on networks, one person’s tags could interfere with those of another. In v8, while, as before, tags appear in the main tables, they are held in a user specific tag table. Thus, all tags and tag functions are now specific to each user. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#tagging</td>
</tr>
<tr>
<td>Excel</td>
<td>V8 has much improved connectivity with Excel. You can open Excel xlsx files more easily and transfer the data into BRAHMS. You can also save data more easily to xlsx files. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#importing https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#exporting</td>
</tr>
<tr>
<td>Memo fields</td>
<td>The concept of memo does not exist and you will not see ‘memo’ in the data grids. However, the text fields that replace them are effectively the same in that they store any length text strings.</td>
</tr>
<tr>
<td>Opening and docking multiple tables</td>
<td>Unlike v7, you can open as many tables as you need at the same time. These tables can be docked in different ways to optimise viewing. You can use multiple monitors to display tables, forms, images, maps and other windows. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#multiple</td>
</tr>
<tr>
<td>Dynamic web links</td>
<td>You can now open multiple external website links at the same time and these will auto update as you scroll through your data grid. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#weblinks</td>
</tr>
<tr>
<td>Mapping</td>
<td>In addition to the v7 mapping options, v8 includes has in-built ArcGIS API mapping to display your data. Map points and grid records are connected allowing you to locate the current record or map point, very handy for finding map errors. https://herbaria.plants.ox.ac.uk/bol/brahms/software/v8#mapping</td>
</tr>
<tr>
<td>RDE</td>
<td>The concept of Rapid Data Entry (RDE) remains. RDE files continue as portable and flexible flat files for data transfers and capture. RDE file structures are now identical to the tables they represent; you can hide and reorganise fields but not remove them; each record has a GUID providing 100% connectivity after import to the main database; RDE data can be edited and used to update data that have already been imported.</td>
</tr>
<tr>
<td>BRAHMS online</td>
<td>Website design and data uploading are more fully integrated in v8. For example, you can see your web page updates online as you edit the HTML.</td>
</tr>
</tbody>
</table>